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Abstract

Background: Genetic studies in autism have pinpointed a heterogeneous group of loci and genes. Further, environment
may be an additional factor conferring susceptibility to autism. Transcriptome studies investigate quantitative differences
in gene expression between patient-derived tissues and control. These studies may pinpoint genes relevant to
pathophysiology yet circumvent the need to understand genetic architecture or gene-by-environment
interactions leading to disease.

Methods: We conducted alternate gene set enrichment analyses using differentially expressed genes from a previously
published RNA-seq study of post-mortem autism cerebral cortex. We used three previously published microarray datasets
for validation and one of the microarray datasets for additional differential expression analysis. The RNA-seq study used 26
autism and 33 control brains in differential gene expression analysis, and the largest microarray dataset contained 15
autism and 16 control post-mortem brains.

Results: While performing a gene set enrichment analysis of genes differentially expressed in the RNA-seq study, we
discovered that genes associated with mitochondrial function were downregulated in autism cerebral cortex,
as compared to control. These genes were correlated with genes related to synaptic function. We validated
these findings across the multiple microarray datasets. We also did separate differential expression and gene
set enrichment analyses to confirm the importance of the mitochondrial pathway among downregulated
genes in post-mortem autism cerebral cortex.

Conclusions: We found that genes related to mitochondrial function were differentially expressed in autism
cerebral cortex and correlated with genes related to synaptic transmission. Our principal findings replicate
across all datasets investigated. Further, these findings may potentially replicate in other diseases, such as in
schizophrenia.
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Background
Autism spectrum disorders (ASDs) constitute a hetero-
geneous group of neurodevelopmental disorders charac-
terized by impaired social interaction, disrupted
development of communication skills, and repetitive be-
haviors [1]. Over an affected individual’s lifetime, costs
of care can reach about $3.2 million while the annual
cost to society is an estimated $35 billion [2]. Such bur-
densome costs combined with new high estimates in
prevalence—including numbers as high as 1 in 68 chil-
dren [3]—call for a need to understand pathophysiology
fully and to develop new treatments. Genetic studies in
autism have pinpointed a heterogeneous group of loci
and genes, largely emerging from studies of rare and/or
de novo genetic variation [4–9]. Common susceptibility
variants and inherited variants have been harder to iden-
tify in autism [10–13]. Further, some recent twin studies,
such as a study by Hallmayer et al., have reported a
more moderate genetic heritability than older studies
[14]. These studies suggest a relatively lower concord-
ance for autism between monozygotic twins (approxi-
mately 58% concordance) and a higher concordance
between dizygotic twins (approximately 20%) as com-
pared to older twin studies on autism (see [15] for a re-
cent meta-analysis of twin studies on autism). In
addition to supporting a strong role for genetics, the re-
sults of Hallmayer et al. implicate a shared twin environ-
ment, such as the in utero environment, as an additional
factor that may play a role in susceptibility to autism.
Transcriptome studies in autism have investigated

quantitative differences in gene expression between the
mRNA samples extracted from post-mortem tissue from
patient brains as compared to control brains [16–19].
One advantage of transcriptome studies is that they may
pinpoint genes and molecular processes that are relevant
to pathophysiology yet the approach circumvents the
need to generate hypotheses about the genetic architec-
ture or the gene-by-environment interactions leading to
disease. Gene expression represents the summation be-
tween genetic burden and environmental insults or ex-
perience. In one of the largest studies to date, gene
pathways involving synapses were found to be most
enriched among the genes with decreased expression in
autism, whereas pathways involving neuroimmune and
microglial response were enriched among the genes with
increased expression in autism [17]. Similar findings
were noted in a more recent and larger RNA-seq study
of autism cerebral cortex [19]. Interestingly, immune
gene alterations had been reported previously in autism
as a preliminary finding in a much smaller dataset [16].
We have conducted an alternative analysis of the tran-

scriptome data using differentially expressed genes from
an RNA-seq dataset [19] and three previously published
microarray datasets [16–18]. We discovered that a gene

pathway related to mitochondrial function was downreg-
ulated in autism cerebral cortex and correlated with a
pathway related to synapse function. Recent independent
reports have also identified downregulation of genes re-
lated to mitochondrial processes in autism post-mortem
brain [20, 21]. These transcriptome data are also con-
cordant with additional multifaceted findings that sup-
port a role for mitochondrial dysfunction in autism
pathology [22, 23]. In addition, autism severity may be
correlated with abnormalities in biomarkers of mito-
chondrial function [22], and further still, a mitochondrial
signature has been seen in other neuropsychiatric condi-
tions, such as in schizophrenia [24]. Overall, our data
support a model wherein mitochondrial processes may
play an important role in the primary pathophysiology
and/or progression of neuropsychiatric diseases.

Methods
Participants
We analyzed gene expression in autism and control
cerebral cortex using genes from Parikshak et al., an
RNA-seq study [19], and microarray data from three
other published studies [16–18]. The primary microarray
dataset was from Voineagu et al. [17] and was down-
loaded from the Gene Expression Omnibus (GEO,
GSE28521) [25]. We limited the Voineagu et al. samples
to those with information on RNA integrity number
(RIN) and post-mortem interval (PMI). This dataset
consisted of prefrontal and/or superior temporal gyrus
samples from 15 autism and 16 control subjects (n = 29
control samples, n = 27 autism samples). The Voineagu
et al. dataset also contained samples from the cerebel-
lum, which were not used in our study. The two other
microarray datasets were from Chow et al. (dorsolateral
prefrontal cortex, n = 18 control samples, n = 15 autism
samples) [18] and Garbett et al. (superior temporal
gyrus, n = 6 control samples, n = 6 autism samples) [16].
We downloaded the Chow et al. dataset from GEO
(GSE28475), and the Garbett et al. authors sent us their
dataset directly. A Venn diagram depicting overlap of
subjects among these datasets is shown in Add-
itional file 1: Figure S1. See Additional file 2: Table S1
for more details about each study used for these
analyses.

Sample preparation and hybridization
The Parikshak et al. dataset samples came from the Na-
tional Institute of Child Health and Human
Development-funded University of Maryland Brain and
Tissue Bank and the Autism Tissue Program [19]. The
Voineagu et al. dataset samples came from the Autism
Tissue Program and the Harvard Brain Bank [17]. The
Garbett et al. dataset samples also came from the Aut-
ism Tissue Program [16], and the Chow et al. dataset
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samples came from the National Institute of Child
Health and Human Development-funded University of
Maryland Brain and Tissue Bank and the Autism Tissue
Program [18]. In all studies, RNA was extracted from
frozen samples. For the Parikshak et al. study, RNA se-
quencing was performed using an Illumina HiSeq 2000
or 2500 machine, with reads mapped to hg19 using Gen-
code v18 annotations. For the Voineagu et al. and Chow
et al. studies, RNA was hybridized to the Illumina
HumanRef8v3 microarray, which contains 24,526
probes. For the Garbett et al. study, RNA was hybridized
to Affymetrix Human Genome 133 plus 2 microarrays,
which has 54,675 probe sets.

Data normalization and characteristics
Each microarray dataset was downloaded or received in
its normalized form, except that we renormalized the
Voineagu et al. dataset to include more probes. Our
renormalized version of the Voineagu et al. dataset was
the same except that we eliminated probes that did not
have significant expression (detection p < 0.05) in at least
half of the autism or control samples, rather than half of
the samples overall. All three studies for the microarray
datasets used log2 transformation and quantile
normalization. Voineagu et al. showed that all samples
met quality control parameters, specifically, if the inter-
array Pearson correlation was not greater than 0.85 and
if the array was an outlier in hierarchical clustering [17].
Chow et al. similarly eliminated samples based on inter-
array correlation but also used ComBat [26] to correct
for batch effects. The Chow et al. data preprocessing
pipeline is described in greater detail separately [27].
After data processing, the Voineagu et al. dataset had
12,632 probes and 10,901 unique Entrez gene identifiers.
Chow et al. and Garbett et al. did not eliminate probes,
resulting in 18,491 and 20,750 Entrez genes, respectively.
All other conversion between gene or probe identifiers
were performed using the R package biomaRt [28].
Other than in the Voineagu et al. dataset, we used all
available genes in the arrays of these datasets.

Statistical analysis
Using Ensembl gene identifiers from Parikshak et al., func-
tional annotation clustering of gene sets was performed in
DAVID (Database for Annotation, Visualization, and Inte-
grated Discovery) [29] using all available gene pathways, in-
cluding all Gene Ontology (GO) [30] gene sets, and default
parameters of DAVID, including medium classification
stringency [29]. The background set of genes in DAVID
analysis was the list of all protein-coding genes in the Parik-
shak et al. RNA-seq dataset, and for the Voineagu et al.
study, the background was the list of unique Entrez identi-
fiers in the dataset. All other statistical analyses were per-
formed using R 3.3.2. We performed differential gene

expression analysis using the Bioconductor package limma
with an empirical Bayes adjustment [31], and we adjusted
for RIN, PMI, age, sex, and cortical location (temporal vs.
frontal). p values were corrected for multiple testing using
the Benjamini-Hochberg method [32]. For DAVID analysis
of the differentially expressed genes from the Voineagu et
al. data, if multiple Entrez identifiers mapped to the same
Illumina probe, which was true for nine of the downregu-
lated probes and six of the upregulated probes, then a sin-
gle Entrez identifier was chosen at random to avoid
over-representing a single genomic feature. Additionally, all
duplicate Entrez identifiers, which was true for 15 of the
downregulated genes and five of the upregulated genes,
were removed prior to DAVID analysis. In validation ana-
lyses, we used all available genes from a pre-specified path-
way. We then calculated mean expression of these genes
and determined a signature’s differential expression using a
t test. Heatmaps were generated using the made4 package
[33], with Euclidian distance as the distance function.

Results
Discovery of a mitochondrial pathway downregulated in
autism cerebral cortex
We set out to discover other biological processes that
were not previously reported to be differentially regulated
in the Parikshak et al. [19] or Voineagu et al. [17] studies.
Parikshak et al. provided a list of genes that are differen-
tially expressed between autism and control cerebral cor-
tex, adjusted for RNA quality, age, sex, brain region, and
batch. These genes were up- or downregulated in autism
cerebral cortex compared to control (see Additional file 3:
Table S2 from Parikshak et al. [19]).
We performed separate DAVID functional annotation

clustering analyses for the up- and downregulated genes
from Parikshak et al. For the upregulated genes, few gene
sets were significantly enriched after Benjamini-Hochberg
adjustment [32] (Additional file 3: Table S2). However,
each of the top 2 clusters among the downregulated genes
included multiple gene sets that were significantly
enriched after Benjamini-Hochberg adjustment (Add-
itional file 4: Table S3). For the downregulated genes, the
gene set cluster with the highest score was largely related
to synapse function and the gene set cluster with the sec-
ond highest score was related to mitochondrial function.
In both the Voineagu et al. [17] and Parikshak et al. [19]
studies, the authors described differential expression of
genes related to synaptic function. Given that a mitochon-
drial pathway had not previously been reported by
Voineagu et al. or Parikshak et al., we decided to focus
on this next. We defined the “synapse pathway” as the
downregulated genes that overlapped with the UniProt
keyword Synapse and the “mitochondria pathway” as
those that overlapped with the GO term “Mitochon-
drion” (Additional file 5: Table S4). To ensure that the
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mitochondria pathway did not describe synaptic func-
tion, we excluded from the mitochondria pathway any
genes that were in the synapse pathway or in a related
gene set, module M12 from Voineagu et al. [17]

Validation of the mitochondria pathway’s downregulation
To exclude the possibility that the mitochondria path-
way’s downregulation was unique to the Parikshak et al.
study, we next validated this downregulation in other
genomic datasets. We used three microarray studies for
validation (Additional file 1: Figure S1 and Additional file 2:
Table S1). Because the Voineagu et al. study’s subjects
were nearly all in the Parikshak et al., it served largely as
technical validation (see Fig. 1 for a heatmap of the genes
in the Voineagu et al. dataset and Additional file 6: Figure
S2 for similar heatmaps regarding the Chow et al. and
Garbett et al. datasets). The mean expression of these
mitochondria pathway genes was downregulated in the
Voineagu et al. dataset (t test p = 0.001), Chow et al. data-
set (p = 0.039), and Garbett et al. dataset (p = 0.076)

(Fig. 2). To ensure that the downregulation of the mito-
chondria pathway in the Voineagu et al. dataset was not
due to confounders, we also did a separate logistic regres-
sion adjusting for RIN, PMI, age, sex, and cortical location
(temporal vs. frontal) and found that the mitochondria
pathway was still downregulated in autism (p = 0.0054). It
was also downregulated in a similar multivariate analysis
after limiting the dataset only to frontal cortex (p = 0.041)
or temporal cortex (p = 0.057). While the mitochondria
pathway was associated with autism, it was not associated
with seizures, speech delay, motor delay, or global func-
tioning in the Voineagu et al. dataset (p > 0.3 for each
comparison).
Because these studies’ subjects overlapped, we did a

separate validation analysis of the Chow et al. and Gar-
bett et al. datasets after removing all but the subjects
unique to these studies. The mitochondria pathway was
still downregulated in these analyses, although the p
values were not significant (p = 0.12 for the Chow et al.
dataset and p = 0.33 for the Garbett et al. dataset), likely

Fig. 1 Heatmap of mitochondrial genes in the Voineagu et al. microarray dataset. The rows are genes and the columns are subjects; the top
vertical bar shows whether a subject was from autism (blue) or control (red). Generally, lower gene expression (blue in heatmap) maps onto the
autism participants (blue in the vertical bar at top of map). Intensity of color is determined by a Z-score normalized by gene. Below the heatmap
is indicated whether the sample is from frontal cortex (black bar) or temporal cortex (blank space). Also shown below the heatmap is the overlap
of each sample with other study datasets, using the first letter of each study
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because of reduced sample sizes (n = 20 for the Chow et
al. dataset and n = 7 for the Garbett et al. dataset).

Genes associated with mitochondrial function and
synaptic function strongly correlate
In our reanalysis of the Parikshak et al. genes, the
synapse-related gene sets were the most strongly enriched
in those downregulated in autism, so we next determined
the relationship between those synapse-related gene sets
and the mitochondria pathway. Across all three microarray
datasets, these two pathways had strong Pearson correl-
ation (Fig. 3). To exclude the possibility that such correl-
ation was common, we also used the Voineagu et al.
dataset to randomly sample without replacement 10,000
gene sets of similar size to the synapse pathway, and we
found that the mitochondria pathway had greater correl-
ation with the synapse pathway than all but 0.37% of
random gene sets. For a specific example of correlated
genes, in the Voineagu et al. dataset, GABRA1, which codes
for a gamma-aminobutyric acid (GABA) receptor subunit,
and ATP5A1, which codes for an ATP synthase subunit,
were strongly correlated (correlation = 0.876).

Alternative gene set enrichment confirms downregulation
of mitochondria-associated genes
Given that the mitochondria pathway was among the most
enriched in the Parikshak et al. downregulated genes, we
did a separate analysis to confirm the importance of this
pathway in autism cerebral cortex. Using the Voineagu et
al. dataset, we performed a differential gene expression ana-
lysis using limma [31] between autism and control cerebral
cortex, adjusting for RIN, PMI, age, sex, and cortical loca-
tion (temporal vs. frontal). This produced 185 upregulated
and 247 downregulated unique genes (Additional file 7:
Table S5). Given that several individuals were represented
twice in this analysis (both for frontal and temporal cor-
texes), we also did separate analyses using only temporal or
frontal cortex samples (Additional file 7: Table S5). We did

not adjust for multiple testing in these cortex-specific ana-
lyses because no genes were differentially expressed after
Benjamini-Hochberg adjustment in these limited samples.
At least 84% of the original up- and downregulated genes
were in the respective cortex-specific up- or downregulated
genes, suggesting broad similarity in these three differential
expression analyses.
We next performed DAVID functional annotation

clustering of the original up- and downregulated genes.
The upregulated genes were enriched in only one gene
set (Additional file 8: Table S6), but the downregulated
genes were enriched in several gene sets, and all of the
top 5 highest scoring gene set clusters were related to
mitochondria (Additional file 9: Table S7).
The Voineagu et al. study limited their differential gene ex-

pression analysis to genes that had a fold change > 1.3. The
mitochondria pathway may have previously gone unreported
in that study because in the Voineagu et al. dataset, the mito-
chondria pathway genes had on average 1.13-fold change in
gene expression while the synapse pathway genes had
1.20-fold change. Similarly, in the Parikshak et al. study, the
synapse pathway genes showed on average 1.25-fold change
while the mitochondria pathway genes showed 1.16-fold
change. Thus, the enrichment may not have been detected
because of the greater fold change for the synapse genes.
Finally, we also observed that the GABA-related genes in

particular were differentially expressed. The synapse path-
way included genes coding for two different GABA recep-
tor subunits, and the gene coding for parvalbumin, which
is a marker of inhibitory interneurons [34], was the most
strongly downregulated gene. The gene coding for parval-
bumin was also the most strongly downregulated gene in
the Parikshak et al. study [19].

Discussion
We have conducted a reanalysis of autism and control
post-mortem brain gene expression using a recent
RNA-seq study [19] and three other similar gene

a b c

Fig. 2 a–c Boxplots of the mean mitochondria pathway gene expression across the three indicated microarray datasets
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expression studies [16–18]. We discovered that genes re-
lated to mitochondria are significantly downregulated in
autism brains relative to control. Abnormalities related
to mitochondria have been implicated in autism patho-
genesis through several lines of evidence, such as
over-representation of mitochondrial disease in ASD pa-
tients and elevation of biomarkers of metabolism such as
lactate and pyruvate [22]. Further, genes for select electron
transport chain complexes have been shown to be lowly
expressed in the cortex of children with autism [35].
We also observed that this mitochondria pathway gene

expression correlated strongly with that of a synapse path-
way, suggesting a common pathophysiology. Consistently,
Gandal et al. recently described a gene module related to
synaptic transmission and mitochondria that was down-
regulated in both autism and schizophrenia [36]. Schizo-
phrenia has also previously been shown to have decreased
expression of mitochondria-related genes [24].
In our study, we noted other similarities to schizophre-

nia, as well. For example, we particularly noted that genes
related to inhibitory interneurons were downregulated. In
prior studies, GAD1 and GAD2 have been shown to be re-
duced in parietal and cerebellar cortex in autism [37] and
GABA receptor density is reduced in post-mortem autism
cerebral cortex [38]. Similar inhibitory interneuron gene
alterations are seen in the cerebral cortex in schizophrenia
[39]. The reason for common downregulation of inhibi-
tory interneuron and mitochondrial genes in autism and
schizophrenia is unclear. However, it is noted that both
conditions are also associated with gene-by-environment
interactions related to the immune system, suggesting a
similar pathophysiology [40]. The immune system’s role is
evidenced by each condition’s association with maternal
immune activiation during pregnancy [41, 42], as well as
with genetic variation in major histocompatibility complex
genes [43, 44].
Because we have not explored protein or functional ana-

lyses, we cannot discern whether these gene expression
changes are part of the primary pathology or secondary
pathology or both. However, in vitro experiments have
shown a close interplay between mitochondria and synapse
regulation. For example, Li et al. showed that GTPases that
control mitochondrial fission and fusion also regulate syn-
apse plasticity and density [45]. These researchers further
showed that increased neuronal activity increased mito-
chondrial fission in a neuron while decreased activity in-
creased fusion, suggesting a mitochondrial response to

a

b

c

Fig. 3 Mean expression of the mitochondria pathway genes plotted
against mean expression of the synapse pathway genes for the three
indicated microarray datasets. a–c Mitochondrial gene expression and
synapse gene expression were correlated in the Voineagu et al. (a),
Chow et al. (b), and Garbett et al. (c) datasets. Correlation coefficients
(cor) are shown and reflect a very high level of correlation
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neuronal energy needs. For autism, primary synaptic dys-
regulation could result in reduced neuronal energy demand
and thus mitochondrial activity. Alternatively, several stud-
ies, including those that report gene mutations or suscepti-
bility variants in mitochondrial genes [46, 47], support the
notion that primary mitochondrial defects may occur in
autism. Regardless, abnormalities in mitochondria are a fea-
ture of synaptic gene dysregulation in idiopathic autism
and deserve additional study. A pertinent question that re-
sults is whether autism symptoms would be responsive to
medicines or supplements that are used in treatment of pri-
mary mitochondrial disease. This hypothesis has been
tested in small studies [48], but further studies may be war-
ranted, particularly after peripheral biomarkers become
available for stratifying patients into groupings that may be
more amenable to these treatments.
Several other factors might affect differential expres-

sion. To account for possible confounders of the associ-
ation between autism and gene pathways, we adjusted
for RIN, PMI, sex, age, and cortical region in our ana-
lyses. However, some variables were not available for
multivariate analysis, including those related to treat-
ment, lifestyle, and other technical confounders. How-
ever, given that the analyses validated across datasets,
the pathway results are robust, and other possible con-
founders are unlikely to alter interpretation of these
pathways’ associations with autism.
Although the magnitudes of the expression changes of

each pathway were relatively small, small-magnitude gene
expression differences can still have profound effects, a
finding seen in other psychiatric conditions, including
schizophrenia [49, 50]. Additionally, because each cortical
sample is from a heterogeneous cell population, small
changes may also represent dilution of a single cell type’s
gene expression changes. In our study, gene expression
changes likely reflect neurons, given the observed correla-
tions with genes related to synaptic and axonal function.

Conclusions
ASDs are a heterogeneous group of diseases with many
proposed pathophysiological mechanisms. We have used
multiple genomic datasets to investigate the pathophysi-
ology of autism by analyzing gene expression patterns.
Our study provides support for hypotheses related to
mitochondrial dysfunction. Additionally, we provide
strong evidence for the coordinated dysregulation of
synaptic and mitochondrial function. With gene expres-
sion alone and without protein or functional assays, it is
not clear whether the synapse and mitochondria path-
ways are downstream of the biology of interest or pri-
mary processes. Thus, these coordinated gene pathways
should be kept in mind as we move forward with dis-
secting molecular networks at the cellular and circuit
level in experimental systems.

Additional files

Additional file 1: Figure S1. Venn diagram depicting the overlap of
participants between the RNA-seq dataset and the three microarray datasets
analyzed in this study. See the “Participants” section under the “Methods”
section for more information on each study. Both autism and control
subjects are included in the Venn diagram. (PDF 176 kb)

Additional file 2: Table S1. Properties of the Parikshak, Voineagu,
Chow, and Garbett datasets. Table depicting the properties of the
datasets analyzed in this study. Properties listed include sample size,
number of features in the dataset, brain region, age range, gender, PMI
range, RIN cutoff, and the source of the cases. (XLSX 12 kb)

Additional file 3: Table S2. DAVID functional annotation clustering
analysis of Parikshak et al. upregulated genes. Using the genes
upregulated in autism cerebral cortex from Parikshak et al., DAVID
functional annotation clustering was performed to generate groups of
enriched gene sets. (XLSX 118 kb)

Additional file 4: Table S3. DAVID functional annotation clustering
analysis of Parikshak et al. downregulated genes. Using the genes
downregulated in autism cerebral cortex from Parikshak et al., DAVID
functional annotation clustering was performed to generate groups of
enriched gene sets. (XLSX 134 kb)

Additional file 5: Table S4. Synapse pathway and mitochondria
pathway genes. The mitochondria pathway genes were downregulated
in autism cerebral cortex in Parikshak et al. and were members of the GO
“Mitochondrion” term. The synapse pathway genes were also
downregulated in Parikshak et al. and were members of the UniProt
“Synapse” term. All genes in the synapse pathway and in the related
“M12” module from Voineagu et al. [17] were excluded from the
mitochondria pathway. (XLSX 16 kb)

Additional file 6: Figure S2. Heatmaps of mitochondrial genes in the
Chow et al. and Garbett et al. microarray datasets. The rows are genes
and the columns are subjects; the top vertical bar shows whether a
subject was from autism (blue) or control (red). Generally, lower gene
expression (blue in heatmap) maps onto the autism participants (blue in
the vertical bar at top of map). Intensity of color is determined by a Z-
score normalized by gene. Shown below the heatmap is the overlap of
each sample with other study datasets, using the first letter of each
study. (PDF 577 kb)

Additional file 7: Table S5. Differential expression analysis between
autism and control cerebral cortex in the Voineagu et al. dataset. Table of
differential expression analysis between autism and control cerebral
cortex in the Voineagu et al. dataset, adjusted for RIN, PMI, age, sex, and
cortical location (temporal vs. frontal). The analysis was performed using
the Bioconductor package limma and adjusted for multiple testing using
the Benjamini-Hochberg method. Because several individuals were in-
cluded twice (for both frontal and temporal cortexes) in this analysis, the
analysis was also redone limiting samples only to frontal or temporal cor-
tex. Note that the p values in the cortex-specific analyses are not adjusted
for multiple testing. (XLSX 265 kb)

Additional file 8: Table S6. DAVID functional annotation clustering
analysis of Voineagu et al. upregulated genes. Using the genes
upregulated in autism cerebral cortex from Voineagu et al., DAVID
functional annotation clustering was performed to generate groups of
enriched gene sets. (XLSX 48 kb)

Additional file 9: Table S7. DAVID functional annotation clustering
analysis of Voineagu et al. downregulated genes. Using the genes
downregulated in autism cerebral cortex from Voineagu et al., DAVID
functional annotation clustering was performed to generate groups of
enriched gene sets. The top 5 clusters had several gene sets related to
mitochondrial function. (XLSX 49 kb)
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