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Abstract 

22q11.2 deletion syndrome (22q11.2DS) is a multisystemic disorder characterized by a wide range of clinical features, 
ranging from life-threatening to less severe conditions. One-third of individuals with the deletion live with mild to 
moderate intellectual disability; approximately 60% meet criteria for at least one psychiatric condition.

22q11.2DS has become an important model for several medical, developmental, and psychiatric disorders. We have 
been particularly interested in understanding the risk for psychosis in this population: Approximately 30% of the 
individuals with the deletion go on to develop schizophrenia. The characterization of cognitive and neural differences 
between those individuals who develop schizophrenia and those who do not, despite being at genetic risk, holds 
important promise in what pertains to the clarification of paths to disease and to the development of tools for early 
identification and intervention.

Here, we review our previous event-related potential (ERP) findings as potential markers for 22q11.2DS and the associ-
ated risk for psychosis, while discussing others’ work. We focus on auditory processing (auditory-evoked potentials, 
auditory adaptation, and auditory sensory memory), visual processing (visual-evoked potentials and visual adapta-
tion), and inhibition and error monitoring.

The findings discussed suggest basic mechanistic and disease process effects on neural processing in 22q11.2DS 
that are present in both early sensory and later cognitive processing, with possible implications for phenotype. In 
early sensory processes, both during auditory and visual processing, two mechanisms that impact neural responses 
in opposite ways seem to coexist—one related to the deletion, which increases brain responses; another linked to 
psychosis, decreasing neural activity. Later, higher-order cognitive processes may be equally relevant as markers for 
psychosis. More specifically, we argue that components related to error monitoring may hold particular promise in 
the study of risk for schizophrenia in the general population.
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Background
22q11.2 deletion syndrome (22q11.2DS), also identi-
fied as velo-cardio-facial or DiGeorge syndrome, occurs 
in approximately 1:1524 to 1:4000 live births [1, 2]. This 
mostly de novo deletion results from meiotic recombi-
nation events in four regions known as A-D low-copy 
repeats (LCR) on the long (q) arm of chromosome 22. 
About 85% of those living with 22q11.2DS present a 
deletion of the entire 2.5- to 3-Mb LCR A-D region; the 
remainder have smaller nested deletions within that 
region [3, 4]. There are 90 known or predicted genes 
present in the 3-Mb 22q11.2 locus that are hemizy-
gously deleted [5]. Of those, about 90% have documented 
expression in the brain and may affect early neuronal 
migration and cortical development [5–7].

22q112.DS is a multisystemic disorder characterized by 
a wide range of clinical features, ranging from life-threat-
ening to less severe conditions [8]. Common medical 
issues involve congenital heart defects, palatal abnor-
malities, immunodeficiency, hypocalcemia, genitourinary 
defects, and feeding and gastrointestinal problems [9, 10]. 
Cognitively, the majority of individuals with 22q11.2DS 
present an intellectual level in the borderline range (IQ 
scores between 70 and 84), and about one-third live with 
mild to moderate intellectual disability [11]. Intellectual 
ability appears to relate, in this population, to deletion 
size: Individuals with smaller (A-B) deletions have mod-
estly higher IQ scores than those with larger (A-D) dele-
tions [12]. Although the neurocognitive profile associated 
with the syndrome is quite variable between individuals, 
22q11.2DS is characterized by overall deficits in executive 
function [13–16], nonverbal memory [17, 18], visuospa-
tial [19–21] and visual-motor [22] processing, and work-
ing memory [23]. Individuals living with 22q11.2DS are 
also at an increased risk for developing psychiatric con-
ditions: Approximately 60% meet criteria for at least one 
psychiatric diagnosis. Attention deficit with hyperactiv-
ity disorder (ADHD), autism spectrum disorder (ASD), 
anxiety and mood disorders, and psychotic disorders and 
schizophrenia have all been described in association with 
the syndrome [24–30]. Increased risk for psychiatric con-
ditions may be related to specific cognitive trajectories in 
22q11.2DS. While different trajectories have been identi-
fied in the syndrome—of relatively stable IQ, decline as a 
result of stagnation of cognitive development relative to 
increasing cognitive requirements, and absolute loss of 
cognitive abilities [31, 32]—the latter appears to be par-
ticularly associated with an increased risk for developing 
a psychiatric disorder [33].

In the past decade, 22q11.2DS has become an impor-
tant model for several medical, developmental, and psy-
chiatric disorders. Allowing for a better understanding 
of different conditions, the study of 22q11.2DS provides 

unique opportunities to clarify trajectories from risk to 
expression of disease. Consequently, the potential for the 
development of translational strategies and early inter-
ventions increases for both individuals with 22q11.2DS 
and those with associated features in the general 
population.

We have been particularly interested in understanding 
the risk for psychosis in this population. With 20 to 40% 
of individuals identified with the deletion going on to 
receive a formal diagnosis of schizophrenia [27–30], such 
risk is one of the most significant concerns for parents of 
children with 22q11.2DS. Importantly, considering the 
overwhelming burden of severe mental illnesses such as 
schizophrenia, clarifying paths to disease and developing 
tools for early identification prior to frank disease onset 
hold real promise for those living with this type of con-
dition. Indeed, the detection of neural vulnerability prior 
to observable symptoms is crucial for the development 
of interventions focused on prevention rather than on 
treatment. Of note, idiopathic and 22q11.2DS-associated 
schizophrenia present similar clinical paths [33, 34] and 
clinical presentations [35] and high concordance of neu-
roanatomic correlates [36–41], which suggests that com-
parable neural changes could be explaining psychotic 
symptomatology in both populations. With approxi-
mately half of the adolescents with 22q11.2DS showing 
schizotypical traits and experiencing transient psychotic 
states [42], subthreshold psychotic symptoms appear, 
however, to present earlier in this group when compared 
to individuals in the general population who develop 
schizophrenia.

Given that all individuals with 22q11.2DS are at 
genetic risk for schizophrenia but not all develop the ill-
ness, a promising approach to understand markers of 
risk and disease is the comparison between those who 
develop psychotic symptoms and those who do not, 
despite being at risk. Our work suggests differences in 
behavior and brain responses between these 22q11.2DS 
subgroups. For instance, while individuals with the dele-
tion but no psychotic symptoms were as fast as their 
age-matched control peers while pressing a mouse but-
ton during a go/no-go task, those with the deletion and 
psychotic symptoms were significantly slower [43]. Addi-
tionally, increased early evoked responses during audi-
tory and visual tasks are observed in individuals with 
22q11.2DS without psychotic symptoms, whereas those 
with the deletion and psychotic symptoms show reduced 
responses, quite similar to findings in individuals living 
with schizophrenia [44, 45].

Here, supported by findings from our work and con-
textualized by the extant literature, we consider the 
promise of event-related potential (ERP) biomarkers of 
risk for psychosis in 22q11.2DS, with the ultimate goal 
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of generating new and critical questions regarding not 
only the true utility of such markers, but also the biology 
underlying risk of psychosis. Biomarkers, characteristics 
that are measured as indicators of typical or atypical bio-
logical processes or responses to an exposure or inter-
vention [46], should be highly reproduceable, accessible 
measures with a sizeable signal-to-noise ratio that are 
modified in dynamic and reliable ways as the clinical con-
dition progresses [47]. Electroencephalography (EEG), 
an easily deployed non-invasive method that provides 
information at the millisecond scale, allows one to probe 
the spatiotemporal dynamics of information processing 
in the brain. Because of its high temporal resolution, it 
permits the distinction between early sensory, sensory-
perceptual, and later cognitive stages of processing [48, 
50] and thus allows one to determine the stage at which 
information processing may be impaired. ERPs, the scalp 
recorded voltage fluctuations of the EEG signal that are 
time locked to a particular event of interest are seen as 
a set of positive and negative deflections in the evoked 
response. These evoked responses, or components, 
reflect activity within and across an often complex net-
work of cortical regions [51, 52].

Considering the focus of ours and others’ work, this 
review covers (1) auditory processing (auditory-evoked 
potentials, auditory adaptation, and auditory sensory 
memory), (2) visual processing (visual-evoked potentials 
and visual adaptation), and (3) inhibition and error moni-
toring. Importantly, these processes have been compre-
hensively investigated in schizophrenia and have been 
discussed as potential endophenotypes for the condition.

Auditory processing
Auditory‑evoked potentials
Auditory-evoked potentials (AEPs) are electrical brain 
responses that follow the presentation of an auditory 
stimulus. AEPs can be subdivided into three sequences 
of waves, reflecting activity at different levels of process-
ing: (1) brain stem response, occurring within the initial 
8–12  ms; (2) middle-latency sequence, resulting from 
activity in thalamic nuclei and neurons in the primary 
auditory cortex and occurring between 8 and 50 ms; (3) 
long-latency or cortical responses, which reflect activ-
ity in higher-order auditory and association cortices and 
generally occur between 50 and 300  ms [52]. Here, the 
focus is on the latter and, more specifically, on compo-
nents indexing basic auditory processing and auditory 
sensory memory.

Basic auditory processing
The auditory N1 is the first prominent negative AEP 
[50] and reflects neural activity generated in and around 
the primary auditory cortex [53]. In schizophrenia, N1 

amplitudes are generally reduced [51, 54–57]. In con-
trast, increased N1 amplitudes appear to be observed 
in individuals with 22q11.2DS [58–60] and have been 
described in a 22q11.2DS mouse model [61]. Larger N1s 
have been associated with elevated activity in the anterior 
cingulate and dorsomedial frontal cortex [60] and associ-
ated with alterations in the cortical glutamate N-methyl-
D-aspartate (NMDA) receptors [58, 62, 63] (see Fig. 1 for 
a simplified representation of the association between 
different neurotransmitters and brain mechanisms/pro-
cesses addressed in the present review). Importantly, 
increased sensitivity to NMDA receptor antagonism has 
been described in a mouse model of 22q11.2DS [61] and 
elevated NMDA-receptor antibodies were found in a 
19-year-old with the deletion and a history of cognitive 
decline and psychotic symptomatology [64].

Utilizing an oddball paradigm, we investigated basic 
auditory processing in individuals with 22q11.2DS. 
Unique to other studies on this topic [58, 59, 65–68], 
we focused on the potential differences between those 
with and without psychotic symptoms. We showed that 
while those without psychotic symptoms recapitulate the 
abovementioned increased N1 amplitudes, individuals 
with one or more psychotic symptoms showed reduced 
N1s (Fig.  2A), as is typically described in schizophrenia 
[51, 54–69]. Such reductions have been argued to index 
genetic risk for psychosis, as they have been described 
in first-degree relatives of individuals living with schizo-
phrenia [57]. Our work, however, suggests otherwise, 
as those with the deletion and no psychotic symptoms 
(but still at-risk for psychosis) presented, here, increased 
amplitudes. Of note, these group differences were most 
evident in the differential response to different stimula-
tion rates and appeared to be largely driven by longer 
stimulus onset asynchronies (SOA) conditions (900 and 
1800  ms versus 450  ms) (see Fig.  2A), as discussed in 
the next section (Auditory Adaptation). We believe that 
there may be two mechanisms at work during early audi-
tory sensory processing in 22q11.2DS: One related to the 
deletion resulting in the increased amplitudes observed 
in human and non-human animals; another associated 
with the presence of psychotic symptoms, which has as 
its outcome a decrease in brain responses. The auditory 
N1 may be modulated by both a deletion in chromosome 
22 and the presence of psychotic symptomatology.

Auditory adaptation
Sensory adaptation is an important property of sensory 
processing, as it appears to attenuate system redundancy 
[70–73]. Typically, in faster versus slower presenta-
tion rates of stimuli, amplitude reductions are observed, 
which can be explained by temporal limitations intrinsic 
to mechanistic brain response generation. That is, faster 
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presentations do not allow for full response recovery, 
which results in decreased amplitudes [50, 74–78]. Other 
explanations of adaptation, related to priming and/or 
expectation have also been considered [79]. Though the 
nature of the neural mechanisms underlying adaptation 
is not fully understood, mechanisms such as neuronal 
refractoriness and presynaptic calcium influx have been 
implicated, as have NMDA-mediated glutamate trans-
mission and GABAergic inhibition [80–83] (see Fig. 1).

In schizophrenia, altered adaptation to repetitive audi-
tory stimuli has been reported [84–87], but this phenom-
enon has been sparsely studied in 22q11.2DS. The few 
studies published do not, moreover, provide a clear pic-
ture. While using sensory gating paradigms, some show 
intact [60, 88], others impaired [68] P50s. The P50 sen-
sory gating is a measure of the suppression of the second 
P50 relative to the first P50 ERP in a paired-click para-
digm assumed to reflect the ability to filter out repeti-
tive, irrelevant stimuli and thus minimize information 
overload [89]. One study employing an oddball para-
digm found reduced intrinsic connection within the right 
primary auditory cortex in a group of individuals with 
22q112.DS but no psychotic symptoms. Such reduction 

was interpreted as suggestive of decreased adaptation in 
22q11.2DS [59].

Our data, derived from a duration oddball para-
digm with three different blocked SOAs (450, 900, and 
1800  ms) supports “typical” adaptation in the N1 time 
window in 22q11.2DS, as can be appreciated in Fig. 2A. 
Indeed, regardless of the presence of psychotic symp-
toms, individuals with the deletion showed adaptation 
effects [44]. A distinction between those with and those 
without psychotic symptoms revealed, however, that, 
while the 22q11.2DS sub-group without psychotic symp-
toms showed increased adaptation effects, individuals 
with one or more symptoms showed decreased effects, 
compared to a control group. Interestingly, a closer 
look at our data revealed that it was the responses at the 
slower presentation rates that differed in the 22q11.2DS 
group, being larger in the 22q11.2DS group overall and 
in the sub-group without symptoms (Fig. 2A). These data 
seem to reiterate the presence of two different but impor-
tant mechanisms in this early time window of sensory 
processing: One mechanism relating to 22q11.2DS and 
resulting in amplitude and adaptation effects increases, 
the other related to psychosis and causing overall ampli-
tude reductions.

Fig. 1  Representation of the implications of two of the genes in the 22q11.2 region implicated in schizophrenia, for the regulation of different 
neurotransmitters and specific measures of brain function
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Auditory sensory memory
Auditory sensory memory can be defined as a preatten-
tive memory system that allows an individual to retain 
traces of sensory information after the termination of 
the original stimulus [90]. This very short memory can 
be assessed by means of the so-called mismatch nega-
tivity (MMN), generated during oddball paradigms. The 
MMN occurs when a repeating stimulus (the standard) 
in a sequence is replaced by a deviant stimulus. By vio-
lating the memory trace formed by the regularity of the 
consecutively presented standards, the deviant induces 
an MMN [91]. Typically ocurring 100 to 200 ms after the 
deviant, the MMN is thought to reflect largely preatten-
tive neural processes underlying detection of a pattern 
violation and updating of a representation of a regular-
ity in the auditory environment [92–94]. This component 
appears to be primarily mediated by the NMDA receptor 
[95] (Fig. 1).

Reduced MMN amplitudes have consistently been 
shown in schizophrenia (for reviews, see [96, 97]) in 
at-risk [98–102], recent onset [99, 100, 103–105], and 

chronic [99, 103, 106–113] stages of the condition, 
although findings are not always consistent and this is 
especially the case in first-episode and at-risk individuals 
where a number of negative findings have been reported 
[111, 114–117]. In 22q11.2DS, evidence is even less con-
sistent (see, for a review, [118]). Whereas reduced pitch 
and duration [65] and frequency MMNs [58] have been 
reported, others have failed to show differences between 
individuals with 22q11.2DS and their control peers in 
frequency [59, 68], intensity, directionally, and duration 
deviants [68].

Such inconsistencies may again be a function of 
the phenotypic heterogeneity that is characteristic of 
22q11.2DS. We had thus hypothesized that, as observed 
in the N1 time window, differences in MMN amplitudes 
would be found between those with and those without 
psychotic symptoms. It was therefore with surprise that 
we not only failed to observe differences between those 
two 22q11.2DS sub-groups, but we actually showed 
a slightly enhanced MMN in this clinical population 
[44] (see Fig.  2B). Given the well-established MMN 

Fig. 2  A Averaged ERPs (standard tones) per group (CT 22q, 22q − (without psychotic symptoms), 22q + (with psychotic symptoms)) and SOA (450, 
900, 1800) at the fronto-central channel FCz. B Difference waves (deviants-standards) per group (CT 22q, 22q − , 22q +) and SOA (450, 900, 1800) at 
the fronto-central channel FCz. Adapted from [44]
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reductions in schizophrenia and the weaker memory 
traces described in 22q11.2DS (see [119]), these findings 
were unexpected. That only a few of the individuals with 
22q112.DS tested in this set of studies had a diagnosis of 
schizophrenia (the majority presented with subthresh-
old psychosis), and that our 22q11.2DS participants were 
younger than the typical individual with schizophrenia 
and have thus been living with symptoms for a signifi-
cantly shorter period of time, likely explains the lack of 
effects seen in the MMN. Considering the inconsistent 
findings regarding MMN amplitudes in 22q11.2DS, the 
potential of this component as a biomarker of psychosis 
risk is not clear in this population.

Visual processing
Visual‑evoked potentials
Visual-evoked potentials (VEPs) refer to electrical poten-
tials recorded from the occipital and parietal scalp over 
the  visual cortex. Here, the focus is on components 
evoked within the first 200 ms after stimulation.

Basic visual processing
Early visual-evoked responses are generally reduced in 
schizophrenia (e.g., [120–131]). In 22q11.2DS, a com-
bination of amplitude decreases and increases has been 
reported in response to visual stimulation [132, 133]. 
While reductions have been observed in P1 and N1 
amplitudes, increased global amplitudes seem to emerge 
in time windows later than those traditionally associated 
with sensory-perceptual processing, around 250 ms [132]. 
These later increases in (frontal) activity in 22q11.2DS 
could reflect an increased recruitment of frontal regions 
to compensate for reduced activity in earlier processing 
in visual cortex [132]. Consistent with these EEG find-
ings, there is evidence of atypical development and con-
nectivity of occipital brain regions in this population. In 

a magnetic resonance imaging (MRI) study, widespread 
loss of white matter extending bilaterally in (among oth-
ers) occipito-parietal regions was found in a small sample 
of adults with the deletion [134]. Given that glutamate is 
a crucial player in the neurotransmission within visual 
pathways, the proline dehydrogenase (PRODH) gene, a 
gene whose haploinsufficiency contributes to the clinical 
phenotype of 22q11.2DS, has been argued as a possible 
susceptibility gene for visual processing differences in 
this clinical population [133] (Fig. 1).

Extending our investigation of early sensory pro-
cesses as potential markers in 22q11.2DS and associ-
ated psychosis to visual processing, we utilized a visual 
adaptation paradigm previously used by our research 
group [120, 135] to question possible neural differences 
between those with and without psychotic symptoms. 
Much like what we found for auditory processing [44], 
we showed increased ERP amplitudes at around 100 ms 
for the group without psychotic symptoms, compared 
to those with psychotic symptoms and to age-matched 
controls [45] (Fig.  3A). Hence, the thesis of enhanced 
sensory processing in 22q11.2DS when in the absence of 
psychotic symptomatology appears to be likewise appli-
cable to early visual processing. The groups also differed 
in a later (~ 200 ms) stage of processing, with those with 
the deletion and psychotic symptoms showing reduced 
amplitudes when compared to those without. Accord-
ingly, while increased amplitudes in the earlier time win-
dow may reflect specific neurogenetic aspects associated 
with a deletion in chromosome 22, reduced amplitudes in 
the later window may be a marker of the presence and/or 
chronicity/severity of psychosis.

Alterations in NMDA receptors have been associated 
with increased early and decreased later neural responses 
[58, 62, 63, 136]. NMDA-related dysfunctional mecha-
nisms may impact the modulation of sensory information 

Fig. 3  A Averaged ERPs per group (CT 22q, 22q − (without psychotic symptoms), 22q + (with psychotic symptoms), and SZ) at the occipital channel 
Oz, showing the average of all ISIs. B Curves representing visual adaptation effects between groups (CT 22q, 22q − , 22q + , and SZ) between 165 
and 205 ms. Error bars represent standard errors of the mean. Adapted from [45]
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reflected by early components and the efficiency of early 
attentional processes indexed by later components [136]. 
Atypical synaptic plasticity in early visual processing 
areas, resulting from both altered glutamate and dopa-
mine levels [137, 138]—modulated by PRODH during 
early brain development [139]—could explain differences 
in visual sensory processing in 22q11.2DS (Fig. 1).

Visual adaptation
Sensory adaptation is an important property of sen-
sory processing [70–73], as indicated in the Auditory 
Adaptation section above. In schizophrenia, reduced 
visual adaption has also been reported [120, 140, 141], 
but see [84], though less consistently than in the audi-
tory domain. To the best of our knowledge, no published 
study other than ours has addressed visual adaption in 
22q11.2DS.

Utilizing a simple checkerboard adaptation task with 
five different interstimulus intervals (ISIs; 145, 245, 495, 
995, and 2495  ms), we showed increased visual adapta-
tion effects in individuals with the deletion, particularly 
in those without psychotic symptoms [45] (Fig.  3B). 
While larger adaptation effects could reflect better vis-
ual encoding efficiency and relate to enhanced visual 
short-term memory and attentional processes [142–144, 
144], such a possibility seems exceedingly unlikely in 
22q11.2DS, in which difficulties have been noted in visu-
ospatial memory, attention, working memory, and other 
executive-type functions [17, 19, 44, 145–147]. As the 
neural mechanisms underlying adaptation are not well 
understood, the mechanistic implications of enlarged 
adaptation in 22q11.2DS remain relatively elusive. Inter-
estingly, those with psychotic symptoms presented 
reduced adaptation effects, as expected in schizophre-
nia. In schizophrenia, reduced visual adaptation has been 
argued to contribute to the visual perception differences 
characteristic in psychosis [148].  Given that one pro-
posed function of adaptation is that it improves discrimi-
nability of novel stimuli [149] and that one explanation 
for psychotic symptoms is the inappropriate attribution 
of salience to irrelevant stimuli, this hypothesis is par-
ticularly relevant for schizophrenia [150] and for those 
with 22q11.2DS and psychotic symptoms. These findings 
affirm, once again, that there are likely two processes at 
play here, one being the neurogenetic influence of a dele-
tion in chromosome 22, and the other being the impact 
of psychosis on sensory processing. The similarity across 
modalities is, moreover, striking. Basic auditory and 
visual processing and adaptation fall into the basic and 
largely obligatory sensory processing domain. While they 
can be influenced by a participant’s state of alertness and 
by the presence or absence of directed attention, these 

influences are relatively small. Consequently, they are 
particularly appealing as candidate biomarkers.

Inhibition and error monitoring
Inhibition and error monitoring are higher-order pro-
cesses that fall in the realm of executive functioning. 
Briefly, executive function is an umbrella term that 
groups the set of cognitive control processes that gov-
ern goal-directed behavior and serve to optimize perfor-
mance on complex tasks, allowing one to be flexible and 
to adapt to novel, ever-changing circumstances [151]. 
As these processes are crucial for function and interven-
tional strategies can target their remediation, work on 
executive function components carries true potential for 
cognitive and daily function improvement.

Inhibitory control
Inhibitory control, the process by which one suppresses 
a prepotent response that is irrelevant or inappropriate 
in a particular context, is essential for adjusting behav-
ior dynamically with changing environmental contexts 
[152–154]. In schizophrenia, there is ample behavioral 
and EEG evidence of differences in inhibitory processes 
[155–160] and this has also been found in 22q11.2DS 
[161, 162]. Using a Go/No-Go EEG task (as in [161, 
162], we asked whether neural differences related to 
inhibitory control in individuals with 22q11.2DS were 
modulated by the presence of psychotic symptoms. Our 
analyses focused on ERP components that are typically 
evoked during similar Go/No-Go tasks: The No-Go N2, 
a negative-going ERP component peaking between 200 
and 300 ms and representing early, automatic inhibitory 
[163–166] and/or conflict detection processes [167–
169], and the No-Go P3, a positive potential that peaks 
at about 300–500  ms, argued as a marker of response 
inhibition [170–174], stimulus evaluation [175–177] and 
adaptive, more effortful forms of control [165, 166, 178].

As can be appreciated in Fig. 4A, our data revealed no 
differences between 22q11.2DS and controls or between 
those with and those without psychotic symptoms in the 
No-Go N2, possibly reflecting the lack of a clear N2 effect 
in either group. The N2 has been argued as a less reliable 
marker of response inhibition than the P3 [179–181]. 
Reductions in the No-Go P3 were, however, observed 
in 22q11.2DS, confirming possible difficulties in inhibi-
tory-related processes (Fig. 4A). Additionally, those with 
smaller P3s performed worse in a standardized inhibition 
task, arguing for the No-Go P3 as reflecting the ability to 
inhibit a prepotent response. Interestingly, the No-Go P3 
was only reduced in the 22q11.2DS group with psychotic 
symptoms, suggesting that this component could be a 
potential marker of the presence of psychotic symptoms 
[43] (Fig.  4A). Indeed, P3 reductions in schizophrenia 
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[182] have been associated with disease severity, regard-
less of medication intake and task demands [183]. Ampli-
tude reductions in this time window have, however, been 
shown in many other conditions such as chronic alco-
holism [184] and ADHD [185], and thus, rather than 
conceiving a reduced P3 as a signature of schizophrenia-
specific processes, one should probably conceptualize it 
as indexing general cognitive impairment in conditions 
characterized by inhibition deficits. Still, P3 could be 
useful in differentiating, within the 22q11.2DS popula-
tion, those at higher risk to develop schizophrenia. P3 
may reflect the activity of the neuromodulatory locus 
coeruleus (LC)–norepinephrine (NE) producing nucleus 
[186]. Norepinephrine dysfunction has been described in 
schizophrenia [187] and seems to be associated with its 
characteristic cognitive deficits [188]. COMT, encoding 
the protein catechol-O-methyltransferase responsible for 
degrading catecholamines such as norepinephrine (par-
ticularly in the prefrontal cortex), is a gene in the 22q11.2 
region and is often thought of as a risk gene candidate for 
psychiatric disorders [8] (Fig. 1).

Error monitoring
Error monitoring involves identification and correction 
of deviance from a correct response [189], and is required 
to achieve goal-directed behavior, to make appropriate 
adjustments to behavior, and to maintain task perfor-
mance [190]. Two ERP components are often associated 
with error monitoring: The error-related negativity (ERN 
or Ne), a component occurring within 100 ms of an erro-
neous response, argued to reflect a mismatch between 
response selection and response execution [191, 192], but 
not remedial action [192]; and the error-related positivity 
(Pe), a component peaking between 200 and 500 ms post 
incorrect-response, which has been suggested to reflect 
conscious error processing or updating of error context 

[192, 193]. Reductions of Pe suggest a weakened (or even 
absent) sense of error awareness [194].

In schizophrenia, Ne is attenuated [195–199] and has 
been argued as a potentially important marker of risk, as 
such reductions have been shown in children with ante-
cedents of schizophrenia [200], in high-risk individuals, 
early in the course of the disease, and in those living with 
chronic schizophrenia [201]. Though less consistently so, 
Pe reductions have likewise been reported in schizophre-
nia [201, 202], but see [197, 199, 203, 204]. To our knowl-
edge, other than ours, no other study investigating these 
components in 22q11.2DS had been published previous 
to this review.

To investigate the potential of error monitoring-related 
components as markers of 22q11.2DS and/or the associ-
ated risk for psychosis, we focused on the neural activ-
ity following false alarms (i.e., responses to non-targets) 
in a Go/No-Go task [43] and compared individuals with 
22q11.2DS with controls and individuals living with 
schizophrenia. As can be seen in Fig.  4B, for both Ne 
and Pe, our data revealed that not only did 22q11.2DS 
differ from controls, showing significantly reduced 
amplitudes, but no differences were seen between the 
two 22q11.2DS sub-groups. Ne and Pe may be potential 
markers of risk for schizophrenia, as all individuals with 
22q11.2DS, regardless of the presence of psychotic symp-
toms, showed virtually absent componentry following the 
errors committed, a pattern that was no different to that 
which we observed in a group of individuals with chronic 
schizophrenia.

Conclusion
Focusing on our previous work on auditory and vis-
ual sensory and higher-order cognitive (inhibition and 
error monitoring) processes in 22q11.DS, we reviewed 
and discussed those findings in the context of defining 
potential markers in this clinical population, particularly 

Fig. 4  A No-Go P3 (difference waves: correct rejections – hits) per group (CT 22q, 22q − (without psychotic symptoms), 22q + (with psychotic 
symptoms), SZ) at the centro-parietal channel CPz. B Averaged ERPs depicting error-related positivity (Pe) per group at CPz. Adapted from [43]
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pertaining to risk for psychosis. As we focus on the 
mostly uncharted comparison between individuals with 
22q11.2DS with and without psychotic symptoms and 
argue for what we believe is the potential impact of such 
comparison, not only for those living with the syndrome, 
but also for other at-risk groups, we believe that this 
review could generate new and critical questions with 
potential to advance the definition of meaningful mark-
ers of risk for psychosis. Figure  5 summarizes the find-
ings discussed here.

Some work has been done in the past decade that 
approaches 22q11.2DS as a model for schizophrenia. 
Most studies have not, however, made a clear distinc-
tion or comparison between those individuals with the 
deletion and psychotic symptoms and those without 
psychotic symptomatology. The data discussed here 
clearly stress the importance of distinguishing between 
those with 22q11.2DS and psychotic symptoms and 
those without in the search for biomarkers. Indeed, in 
both auditory and visual sensory processing and execu-
tive function-related processes, we describe signifi-
cant differences between those two sub-groups. In our 
opinion, it is in these differences that true understand-
ing of pathways to disease may rest. Importantly, this 
approach can be generalized to any other associated 
features for which clear sub-groups can be formed. In 

characterizing phenotypically heterogenous syndromes 
such as 22q11.2DS, though it remains important to 
understand overall function, it is in the consideration 
of individual differences and sub-group trajectories that 
tangible potential for translational and interventional 
strategies may be found. For instance, it may be critical 
to consider individual differences in cognitive function-
ing and the extent to which those do or do not account 
for some of the findings reported in this review (of note, 
the 22q − and 22q + groups compared here did not dif-
fer in IQ scores). As argued for in schizophrenia [205], 
specific components or measures of cognitive function 
(e.g., verbal and non-verbal abilities) may serve as pro-
tective mechanisms in 22q11.2DS and should thus be 
leveraged.

The findings discussed here suggest basic mechanis-
tic and disease process effects on neural processing in 
22q11.2DS that are evident in early sensory and later cog-
nitive processing, with possible implications for pheno-
type. As discussed in each section, most of the findings 
reported may be explained by processes related to the 
NMDA receptor complex and glutamatergic and GABAe-
rgic modulations, all possibly associated with PRODH 
and COMT, two of the genes in the region 11.2 in the 
long arm of chromosome 22 (see Fig.  1). The thorough 
investigation of NMDA-related function in 22q11.2DS, 
given its described associations with different compo-
nents of sensory processing and seminal evidence of dys-
function in humans with the syndrome, animal models of 
22q11.2DS, and in individuals living with schizophrenia, 
may hold particular promise in further characterizing the 
biology of (risk for) psychosis.

In summary, in early sensory processes, both during 
auditory and visual processing, two mechanisms that 
impact neural responses in opposite ways seem to coex-
ist—one related to the deletion, which increases brain 
responses; another linked to psychosis, which decreases 
neural activity. Whether the amplitude enhancement 
in individuals with 22q11.2DS and no psychotic symp-
toms serves as a protective mechanism or is a mere 
consequence of the deletion, remains elusive. Addition-
ally, it is unclear whether the decreased neural activity 
observed in those with psychotic symptoms is second-
ary to psychotic features or inherent to those who will 
develop them. Clarifying this matter is of incredible value 
to those living with a chromosome 22q11.2 deletion, but 
also to individuals in the general population who are at 
risk for developing schizophrenia. Indeed, it remains 
crucial to differentiate the global neural effects of living 
with psychosis from the biology contributing to psycho-
sis itself.  Longitudinal studies allowing for the study of 
the prodromal phase of psychosis could hold particular 
potential here.

Fig. 5  Graphic summary of findings, per process discussed and 
per group (22q11.2DS without psychotic symptoms: 22q − , 
22q11.2DS with psychotic symptoms: 22q + , schizophrenia: SZ). 
Green, upward-pointing arrows represent increased response; Pink, 
downward pointing arrows represent decreased response. * Findings 
for basic auditory processing and auditory adaptation are based on 
the literature
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We further show that later, higher-order cognitive pro-
cesses may be equally relevant as markers for psycho-
sis. More specifically, we argue that components related 
to error monitoring (Ne and Pe) may hold promise in 
the study of risk for schizophrenia in the general popu-
lation. A more thorough, longitudinal investigation of 
these potential markers, the roles of genes in the 22q11.2 
region in the conversion to psychosis, and NMDA-
related dysfunctional mechanisms has potential to 
advance our knowledge about the contribution of specific 
neural and genetic processes (and of their interactions) to 
the onset of schizophrenia. Though the focus of the pre-
sent manuscript is on the association between psychosis 
and a chromosome 22q11.2 deletion, other neurodevel-
opmental disorders have been observed in individuals 
living with the deletion. Future research should inves-
tigate if the presence of conditions such as ASD and 
ADHD, or symptoms related to these diagnoses, affect 
the pattern of findings reported here and take the com-
plex inter-influences of clinical and cognitive variables 
into consideration.
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