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Abstract

Background Developmental dyslexia (DD) and attention deficit/hyperactivity disorder (ADHD) are highly comorbid
neurodevelopmental disorders. Individuals with DD or ADHD have both been shown to have deficits in white mat-
ter tracts associated with reading and attentional control networks. However, white matter diffusivity in individuals
comorbid with both DD and ADHD (DD + ADHD) has not been specifically explored.

Methods Participants were 3 and 4™ graders (age range=7to 11 years; SD=0.69) from three diagnostic groups
(DD (n=40), DD + ADHD (n=22), and typical developing (TD) (n=20)). Behavioral measures of reading and attention
alongside measures of white matter diffusivity were collected for all participants.

Results DD+ ADHD and TD groups differed in mean fractional anisotropy (FA) for the left and right Superior Longi-
tudinal Fasciculus (SLF)-Parietal Terminations and SLF-Temporal Terminations. Mean FA for the DD group across these
SLF tracts fell between the lower DD +ADHD and higher TD averages. No differences in mean diffusivity nor signifi-
cant brain-behavior relations were found.

Conclusions Findings suggest that WM diffusivity in the SLF increases along a continuum across DD +ADHD, DD,
and TD.
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Background

Although reading occurs relatively easily for most chil-
dren, the 5-17% of children who cannot learn to read
proficiently may be affected by developmental dyslexia
(DD; [1-3]). DD is a neurodevelopmental disorder that is
defined by difficulty in processing phonological informa-
tion [2, 4] along with deficits in rapid automatic naming
[5]. DD is also associated with poor reading fluency and
comprehension in comparison to typically developing
peers. Many of these deficits found within DD are linked
to impairments in the well-defined left-hemisphere
language and reading network [1, 6]. Other deficits
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commonly related to DD include poor short-term and
working memory [7], difficulties with visual information
processing [8], and slowed processing speed [9], all of
which are seen in children with other neurodevelopmen-
tal disorders.

Research indicates that approximately 40% of children
with DD also meet criteria for at least one additional
disability [10, 11], with attention deficit/hyperactivity
disorder (ADHD) being the most commonly co-occur-
ring impairment, diagnosed in 25-40% of children with
DD [11]. A majority of these comorbid ADHD cases fall
within the inattentive subtype of ADHD (ADHD-[; 11).
The prevalence of comorbid inattentive behaviors is sig-
nificantly higher than would be expected by chance, with
up to 26% of individuals with DD also meeting criteria for
ADHD-I [11, 12]. Moreover, genetic overlaps have been
reported between DD and ADHD-I [13-16]. Inatten-
tion in these children has also been shown to negatively
impact behavior and academic performance [17, 18], and
those students with DD plus co-morbid ADHD-I may
suffer from deficits in attention that additionally impede
their reading development [17, 19]. Children experi-
encing greater inattention typically perform poorly on
math and reading achievement tests, even after control-
ling for intelligence [12, 20-22]. Furthermore, a strong
relationship between attention and the development of
pre-reading skills in preschoolers may later impact the
development of word identification abilities [23]. The
combination of DD and ADHD disorders therefore may
impact a child’s reading development above that of either
DD or ADHD when diagnosed exclusively [9, 24-26].

Neural correlates

Although much research has characterized DD and
ADHD as two separate and distinct disorders [27, 28], DD
and ADHD may share components across their underly-
ing neural systems, which may account for their higher
rate of comorbidity. Research has identified a complex
neural reading network, consisting of a predominantly
left—hemisphere system that encompasses the inferior
frontal, temporoparietal, and occipitotemporal cortical
regions [29, 30]. Three distinct neural pathways, or sub-
systems, have been shown to work in parallel to accom-
plish fluent and proficient reading [2, 31]. The reading
network’s dorsal system is comprised of left temporopa-
rietal areas including the angular gyrus, supramarginal
gyrus, and posterior portions of the superior temporal
gyrus, which are thought to play a role in mapping ortho-
graphic information to the phonological and semantic
properties of written words [32]. The ventral system is
associated with the left ventral occipitotemporal cortex
extending into the middle and inferior temporal gyrus,
which facilitates processing of the orthographic features
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of written language that is necessary for automatic word
recognition [33, 34]. The anterior system is focused
within the left inferior frontal gyrus (IFG) and adjacent
frontal gyri and is important for several processes such as
phonological recoding and semantic integration [35-37].
Individuals with DD show reduced functional [38] and
network connectivity [39] within the ventral subsystem.
Moreover, network connectivity within the ventral sys-
tem improves with reading skills over time, yet dorsal
system network connectivity decreases over time with
improved reading skills [39].This suggests an increased
reliance on the automatic ventral subsystem and reduced
reliance on the phonological dorsal subsystem with
improved reading.

Research has deemed adequate attentional control
as necessary for efficient executive functioning [40, 41],
and children with DD show impairments in selective
attention and the executive functions of inhibition and
working memory [42]. In the same vein, neuroimaging
research connected to attention and ADHD has identi-
fied a cingulo—fronto—parietal attentional control net-
work, which is further associated with the fronto—striatal
and fronto—parietal pathways [43]. Indeed, this atten-
tional control network consists of connections between
the lateral frontal pole, anterior cingulate cortex, dorso-
lateral prefrontal cortex, ventrolateral prefrontal cortex,
inferior parietal lobe, and various subcortical regions
[44]. As a primary substrate for attention and executive
functioning [43], this network is thought to facilitate
goal—directed processes and provides for the ability to
respond to changing task demands [44]. Individuals with
attentional deficits, such as those associated with ADHD,
show decreased activation within the attentional control
network [45, 46]. Specifically, individuals with deficits in
attentional control have shown hypoactivation in brain
areas associated with both attention and executive func-
tion such as the anterior cingulate cortex, the parietal
cortex, the ventrolateral prefrontal cortex, and the dorso-
lateral prefrontal cortex.

These distinct, yet overlapping, neural systems attrib-
uted to DD and ADHD may at times share a range of
neural deficits between the two disorders, leading to
the commonly occurring co-morbid DD and ADHD
(DD+ ADHD). Indeed, individuals with both a reading
disability (encompassing DD) and ADHD have shown
gray matter differences within regions of the frontal-
striatal pathway partly comprising the attentional con-
trol network [47] and the reading network [48], which
have been functionally associated with executive func-
tioning and reading ability, respectively [49]. Likewise, a
meta-analysis found similar regional deficits within the
frontal-striatal pathways in DD and ADHD populations
[50]. Moreover, research shows overlapping gray matter
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correlates within the attentional control network for
ADHD and comorbid reading disability and ADHD [47]
and within the reading network for reading disability and
comorbid reading disability and ADHD [48, 49]. There-
fore, it may be expected that those children who show co-
morbid DD+ ADHD attributes would show increasing
levels of deficits among those shared components of the
neural systems.

White matter tracts of interest

These complex reading and attentional networks
require effective and rapid communication between
their connected regions to function effectively. There-
fore, at a basic structural level, it is important to under-
stand the quality and role of these network’s connecting
white matter tracts and their relationship with specific
behavioral outcomes in children with DD. Diffusion
tensor imaging (DTI), which allows for the quantifica-
tion of diffusion properties for white matter [51], per-
mits such an examination of the structural pathways
that underlie the reading and attentional networks.
Quantitative analysis yields many different diffusivity-
based measures of white matter with both fractional
anisotropy (FA) and mean diffusivity (MD) being
widely used [52]. FA utilizes eigenvalues that quantify
diffusivity parallel and perpendicular to tract fibers to
measure the fraction of the “magnitude” of anisotropic
diffusion, which quantifies the degree of directionality
for diffusivity [52, 53]. MD is the average of principal
diffusivities parallel and perpendicular to the axon [54]

m Corpus callosum (CC)

m |nferior longitudinal fasciculus (ILF)
m Superior longitudinal fasciculus (SLF)

mUncinate fasciculus (UF)
Fig. 1 White matter tracts of interest
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with higher MD reflecting higher diffusivity along the
axon. As markers of white matter diffusivity, FA and
MD are useful quantities to compare across subjects as
they provide information about directional architecture
and axonal myelination [55].

Four primary white matter tracts (Fig. 1) — namely, the
superior longitudinal fasciculus (SLF), the inferior longi-
tudinal fasciculus (ILF), the uncinate fasciculus (UF), and
regions of the corpus callosum (CC) — have been closely
studied within both the reading [2] and attentional con-
trol [43] networks. The SLF is a large lateral associative
white matter bundle generally connecting the temporo-
parietal area (TPA) with the frontal, parietal and tempo-
ral areas and may segmented into three branches: (1) the
dorsal SLF, a direct segment running medially, connect-
ing the TPA with the middle (MFG) and superior frontal
gyri; (2) the ventral SLF, the lateral anterior segment link-
ing the IFG and MFG to the inferior parietal lobule (IPL);
(3) the posterior SLF, linking the TPA with the IPL via the
lateral indirect posterior segment [56]. The ventral and
dorsal SLE, subsuming portions of the arcuate fasciculus
(AF), are typically thought to constitute the SLF temporal
bundle (SLFt), whereas the posterior SLF constitutes the
SLF parietal bundle (SLFp; [57]. Children and adults with
poor word reading ability have shown decreased white
matter diffusivity in the left SLFt [6] and SLFp [58] as
indicated by lower FA values. Moreover, Chinese children
with DD have been shown to have lower FA values in the
left SLFt, associated with phonological processing skills
[59]. Individuals with ADHD have also been shown to

Note: green=corpus callosum (CC); blue =inferior longitudinal fasciculus (ILF); orange = superior longitudinal fasciculus (SLF); red = uncinate

fasciculus (UF)
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have reduced FA in the right SLF [60] and increased MD
in the left SLF [61] compared to non-impaired controls.

The ILF is a ventral associative tract consisting of long
and short fibers that directly connect the occipital and
anterior temporal lobes [62]. Research has suggested
relations between the left ILF and measures of word read-
ing fluency [63, 64] and reading comprehension [63, 65].
Decreased FA in the left ILF has been reported in Chi-
nese children with DD and this was related to semantic
skills as appropriate for the Chinese logographic alpha-
bet [66]. Reduced diffusivity in the ILF, bilaterally, has
also been shown in children with ADHD [67]. Moreover,
reduced FA in the left ILF has been observed in adults
with ADHD, whereas MD in the left ILF has shown a
negative association with attentional performance [68].

The UF is a ventral association bundle that connects
the anterior temporal lobe with the orbitofrontal cor-
tex, including the IFG [69]. It is thought to play a role in
language functions such as lexical retrieval and seman-
tic associations [70] with research implicating a role in
reading comprehension [65, 71]. DD has been associated
with reduced white matter connectivity in the UF [72].
Conversely, increased FA [61, 73] and MD [61] values in
the bilateral UF have been observed in adults with the
combined inattentive and hyperactive ADHD subtype
(ADHD-C).

The CC is a major commissure that connects the left
and right hemispheres of the brain and is mainly associ-
ated with interhemispheric connectivity [74]. Based on a
multivariate machine learning approach, the CC is one of
the most discriminative features classifying DD [75], and
research has shown that children’s reading skill is nega-
tively correlated with FA within the posterior callosum
across typical and impaired readers [76]. For individuals
with ADHD, measures of inattention and hyperactivity
have been negatively correlated with a reduced corti-
cal thickness of the CC in older adults [77] and lower FA
values in the CC for children [78]. Most notably, a meta-
analysis of white matter diffusivity in children and adults
with ADHD found lower FA in the right forceps minor of
the CC in comparison to those without ADHD [79].

Current study

Researchers have investigated the relations between
white matter tract diffusivity of the CC, ILF, SLF, and
UF as they relate to groups of individuals diagnosed
with either DD or ADHD independently but have not
evaluated their role in comorbid subjects who have
DD +ADHD. The primary aim of this study was to
explore potential differences in white matter tract dif-
fusivity of the CC, ILF, SLF, and UF in children with DD
only, DD+ ADHD, and compared to typically developing,
unimpaired readers (TD). We also sought to investigate
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the relations between measures of white matter diffusiv-
ity and behavioral measures of reading ability and atten-
tional control in these groups. We hypothesized that
white matter diffusivity for the tracts of interest would be
significantly reduced in DD+ ADHD compared to both
DD and TD groups due to their shared underlying neural
deficits, and based on the previous literature, that the DD
only group would show reduced white matter diffusivity
compared to the TD group. Furthermore, we hypoth-
esized that white matter tract diffusivity would be posi-
tively correlated with measures of reading proficiency
and attentional control.

Methods

Participants

Participants were recruited from public and charter ele-
mentary schools in the greater Atlanta area as part of a
longitudinal study of reading intervention approved by
the Georgia State University/Georgia Tech Center for
Advanced Brain Imaging Institutional Review Board.
All parents/students provided informed consent/assent
before any participation in the study. Participants
included 3rd and 4th grade students from 7 to 11 years
old (mean age=9.32; SD=0.69; please see Table 1 for
age statistics separated by group) who completed base-
line behavioral/cognitive assessments and an MRI scan
(including DWI sequences) as part of participation in
the larger study. Participants were assigned to one of
three groups based on their reading disability and ADHD
comorbidity status: DD, DD+ ADHD, or TD. Children
identified with DD (n=40) scored at least one standard
deviation below age-norm expectations on any of the fol-
lowing: Woodcock Johnson 3" Edition (W]J-3; [80]) Broad
Reading Cluster subtests or the composite, the WJ-3
Basic Reading Cluster subtests or composite, or Test of
Word Reading Efficiency 2" Edition (TOWRE-2; [81])
subtests. DD + ADHD readers (n=22) met the same cri-
teria for DD and also exhibited high ADHD symptomol-
ogy as defined by the Strengths and Weaknesses of ADHD
symptoms and Normal Behavior (SWAN; [82]) and the
Disruptive Behavior Rating Scale (DBRS; [83]) as rated by
a guardian and teacher. Guardians and classroom teach-
ers were asked to complete both the SWAN and DBRS
rating scales on all participants in the study. A composite
of these scores and individual symptom ratings on these
scales were used to identify subjects in the DD+ ADHD
group using current DSM-5 criteria for both the Com-
bined and Inattentive types. In the rare case that data
was not returned from one rater (i.e., parent or teacher)
or rating scale, available scores were used. TD read-
ers (n=20) were recruited from the same schools but
did not meet criteria for either DD or ADHD. All par-
ticipants had a verbal and/or performance intelligence
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standard score at or above 80 on one of the subtests of
the Wechsler Abbreviated Scale of Intelligence—II (WASI-
IT; [84]) in order to rule out intellectual disabilities. All
children in the study completed screening materials for
diagnostic criteria and were native English speakers.
Children with chronic absenteeism (>15 absences per
year), hearing impairment (<20/40), serious emotional/
psychiatric disturbance, chronic medical/neurological
condition, or MRI contraindicative according to guardian
report were excluded.

Behavioral measures

Reading measures

The composite score of the Sight Word Efficiency
and Phonological Decoding Efficiency subtests of the
TOWRE-2 was used as a measure of word reading flu-
ency (TOWRE-CST). The TOWRE-2 requires partici-
pants to read aloud words and pseudowords, respectively,
as quickly and as accurately as possible. A higher
TOWRE-CST reflects better word reading efficiency.

Attentional and Executive Function measures

The Behavior Rating Inventory of Executive Function
(BRIEF) measured executive function via an 86-item
questionnaire answered by a parent or guardian [85].
The Global Executive Composite (GEC) T Score is a
combined measure of all sub-scales produced by BRIEF
and provides a measure of executive function (GEC-T).
A higher GEC-T reflects poorer executive function. The
Behavioral Regulation Index (BRI) T Score is a combined
measure of the Inhibit, Shift, and Emotional Control
subscales and provides a measure of behavioral atten-
tion (BRI-T). A higher BRI-T reflects poorer behavioral
attention.

Magnetic resonance imaging

Data acquisition MRI

Images were acquired using a 3 T Siemens scanner located
at the GSU/GaTech Center for Advanced Brain Imaging
in Atlanta, Georgia. The site scanner was upgraded from
a Trio (12-channel head coil) to a PRIMSA-Fit (20-chan-
nel) during the final year of data collection (#=13). Data
acquisition and scan parameters were kept consistent
throughout the duration of the study and processed data
was harmonized to account for inter-scanner differ-
ences (see Imaging data preprocessing section below). All
included subjects completed diffusion-weighted imaging
data, collected in two separate sequences with reverse
phase encoding (anterior-to-posterior and posterior-to-
anterior) via the following parameters: FoV: 220 X 220 mm;
slice thickness: 2 mm; repetition time TD/TE:
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8900/97 ms; slices: 64; b:1000, 4* b:0; 32 gradient direc-
tions; voxel size isotropic: 2 mm. Total DWTI acquisition
time for collection of both sequences was approximately
10 min total. T2*-weighted images were acquired in an
axial-oblique orientation parallel to the intercommissural
line (32 slices; 4 mm slice thickness; no gap) using single-
shot echo planar imaging (matrix size=64X64; voxel
size =3.438 X 3.438 X4 mm; FoV =220 mm; TD =2000 ms;
TE=30 ms; flip angle=80°). Anatomical scans were
collected in the same orientation (MPRAGE; matrix
size =256 X 256; voxel size=1x1x1 mm; FoV=256 mm;
TD=2530 ms; TE=2.77 ms; flip angle="7°).

Imaging data preprocessing

After visual and automated quality assurance for all
image data, DWI data were preprocessed with TOR-
TOISE [86] using a T2* structural file and a MPRAGE
reorientation file. DIFF_PREP was used for motion and
eddy current distortion with computed B-matrix of gra-
dient tables [87]. DR-BUDDI corrected susceptibility
induced EPI distortions via blip-up and blip-down data
(AP/PA co-registration), and DWIs were reoriented into
target space with B-matrices [88].

The FreeSurfer 6.0 image analysis suite was used to
process anatomical data [89]. This automated procedure
contained segmentation of cortical and subcortical white
matter, tessellation of gray matter/white matter bounda-
ries, inflation of the folded surface tessellation patterns
[90, 91], and automatic correction of topographical
defects [92]. Manual intervention was performed by a
trained technician consistent with FreeSurfer protocol,
when necessary.

Automated reconstruction of white matter tracts of
interest was carried out via FreeSurfer’s TRACULA pipe-
line using global probabilistic tractography [57]. Specifi-
cally, the combination of FreeSurfer’s cortical parcellation
and subcortical segmentation with TRACULA’s ana-
tomical atlas provided the automated reconstruction of
18 major white matter tracts. TRACULA utilizes FSL’s
bedpostx to fit the ball-and-stick model to DWTI data and
reconstruct pathways. Out of the 18 tracts, we extracted
the FA and MD values for the following white matter
tracts of interest (L=left; R=right): the SLFt (SLF tem-
poral bundle, consisting of components of ventral and
dorsal SLF and AF), the SLFp (SLF parietal bundle; SLF-
posterior), the ILF, the UF, the fminor (anterior CC; for-
ceps minor), and fmajor (posterior CC; forceps major).

To account for differences between data collected
before and after scanner upgrade, DTI data were harmo-
nized using ComBat [93]. ComBat assumes the imaging
feature measurements can be modeled as a linear combi-
nation of the biological variables with the scanner effects



Slaby et al. Journal of Neurodevelopmental Disorders (2023) 15:25

as an error term that includes a multiplicative scanner-
specific scaling factor. It has been shown to effectively
reduce inter-scanner variation in DTI data while effec-
tively preserving biological associations [94, 95].

Statistical analyses

A separate one-way between subjects analysis of vari-
ance compared the TOWRE-CST, BRI-T, and GEC-T
on three levels: DD+ ADHD, DD, and TD. Likewise,
separate one-way between subject analysis of variance
models compared the harmonized means for FA and
MD for each of the tracts of interest individually on
three levels: DD, DD + ADHD, and TD. Mean FA and
MD data were assessed for extreme outliers via box-
and-whisker plots, which resulted in the removal of two
outliers that were present in more than one white tract
of interest. Participants section details our total sample
size (n=82) after outlier removal and for all data analy-
ses. The Tukey—Kramer post hoc test was used to test
for significant group differences for all analyses. Pear-
son bivariate correlations were run for mean FA and
MD of the tracts of interest and the following behav-
ioral measures: TOWRE-CST, BRI-T, and GEC-T. The
False Discovery Rate (FDR) was applied to all correla-
tions to correct for multiple comparisons.

Results

Behavioral comparisons between groups

The one-way analysis of variance revealed significant
differences between groups on all behavioral meas-
ures of reading, attention, and intelligence (Tables 1
and 2): WJ-3 Basic (F(2,79)=88.9, p<0.001), WASI-II
(F(2,79)=31.0, p<0.001), TOWRE-CST (F(2,79)=93.5,
p<0.001), BRI-T (F(2,79)=7.42, p<0.001), and GEC-T
(F(2,79)=23.3, p<0.001). For diagnostic measures,
TD significantly differed from DD and DD+ ADHD
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on the WJ-3- Basic (p<0.001) and WASI-II (p <0.001)
showing the highest reading and intelligence scores,
respectively; however, DD and DD + ADHD showed no
significant differences. Likewise, TD significantly dif-
fered from DD and DD+ ADHD on the TOWRE-CST
(p<0.001) showing the highest reading score; however,
DD and DD + ADHD showed no significant differences.
Moreover, DD + ADHD significantly differed from both
TD (p<0.001) and DD (p=0.026) on the BRI-T show-
ing the lowest behavioral attentional score; however,
TD and DD showed no significant difference. On the
GEC-T, TD significantly differed from DD (p=0.014)
and DD + ADHD (p <0.001), while DD significantly dif-
fered from DD+ ADHD ( p<0.001) with DD+ ADHD
showing the lowest and TD showing the highest execu-
tive functioning score.

White matter comparisons between groups

The one-way analysis of variance revealed significant
differences between groups for the mean FA values in
the following tracts of interest (Tables 3 and 4): L SLFp
(F(2,79)=3.90, p=0.024), L SLFt (F(2,79)=3.13, p=0.003),
R SLFp (F(2,79)=3.33, p=0.041), and R SLEt (F(2,79)=3.72,
»=0.029). There were significant differences in the mean
FA of the L SLFp (p=0.018), L SLFt (»=0.002), R SLFp
(p=0.036), R SLFt (p=0.029), such that the DD+ ADHD
group had significantly lower FA than the TD group in all
tracts (Fig. 2). There were no significant differences for DD
compared to DD+ADHD or between DD compared to
TD. There were no significant differences between groups
for mean MD for all tracts of interest.

Brain—behavior relations

Pearson bivariate correlations revealed relations
between behavioral measures and measures of white
matter diffusivity for tracts of interest. Non-corrected

Table 1 ANOVA of individual group descriptive statistics with significant groups confirmed via Tukey—Kramer post-hoc tests

Variable DD+ ADHD DD D F(2,79) p npz Tukey-Kramer post-hoc tests
M (SD) M (SD) M (SD)

N (Female) 22 (8) 40 (27) 20(9) -- -- -- --

Age 9.27 (0.68) 9.34(0.76) 9.34 (0.56) - - - -

BRI-T 57.05 (10.86) 49.00 (13.16) 4365 (7.54) 7.42 <0.001 0.158 TD<DD & DD + ADHD
GEC-T 62.73 (7.69) 4998 (12.36) 42.10 (5.96) 233 <0.001 0.371 TD<DD< DD+ ADHD
TOWRE-CST 69.32(10.18) 72.85 (8.46) 105.45 (11.30) 93.5 <0.001 0.703 TD>DD & DD + ADHD
WASI-II 92.96 (9.42) 91.93 (8.31) 112.25(12.85) 31.0 <0.001 0.440 TD>DD & DD+ ADHD
WJ3-Basic 84.1(8.83) 8645 (8.17) 111.85(6.32) 82.9 <0.001 0.692 TD>DD & DD + ADHD

M Mean, SD Standard deviation, Bolded Statistically significant values, DD Developmental dyslexia, DD+ ADHD Developmental dyslexia comorbid with attention
deficit/hyperactivity disorder, TD Typical developing, unimpaired readers, BRI-T BEHAVIORAL Regulation Index T Score taken from the Behavior Rating Inventory of
Executive Function (BRIEF), GEC-T Global Executive Composite T Score taken from BRIEF, TOWRE-CST Test of Word Reading Efficiency 2" Edition Composite Score,
WASI-Il Wechsler Abbreviated Scale of Intelligence - II, WJ3-Basic Woodcock Johnson-Ill Basic Reading Composite Score. Note: BRI-T differs for TD < DD + ADHD &
DD < DD + ADHD; no difference between DD & TD. TOWRE-CST, WASI-II, & WJ3-Basic differ for TD > DD + ADHD & TD > DD + ADHD; no difference between DD &

DD +ADHD
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Table 2 Tukey—Kramer post-hoc test results from ANOVA of individual statistics for behavioral measures
Measure Group Comparisons Mean Difference P 95% Confidence Interval
Lower Bound Upper Bound
BRI-T TD<DD 535 0.208 -2.12 12.82
TD<DD+ ADHD 13.40 <0.001 4,97 21.83
DD<DD+ADHD 8.05 0.026 0.81 15.29
GECT TD<DD 7.88 0.014 1.35 14.41
TD<DD+ADHD 20.63 <0.001 13.26 28.00
DD < DD+ ADHD 12.75 <0.001 6.42 19.08
TOWRE-CST TD>DD 32.60 <0.001 26.27 38.93
TD>DD+ ADHD 36.13 <0.001 28.99 43.27
DD >DD+ADHD 3.53 0.359 -2.60 9.66
WASI-II TD>DD 20.32 <0.001 13.86 26.78
TD>DD + ADHD 19.29 <0.001 12.01 26.57
DD>DD+ADHD -1.03 0918 -7.29 5.23
WJ3-Basic TD>DD 25.40 <0.001 20.20 30.60
TD>DD + ADHD 27.75 <0.001 21.88 33.62
DD>DD+ADHD 2.35 0.509 -2.69 7.39

Bolded Statistically significant values, DD Developmental dyslexia, DD +ADHD Developmental dyslexia comorbid with attention deficit/hyperactivity disorder, TD
Typical developing, unimpaired readers, BRI-T Behavioral Regulation Index T Score taken from the Behavior Rating Inventory of Executive Function (BRIEF), GEC-T
Global Executive Composite T Score taken from BRIEF, TOWRE-CST Test of Word Reading Efficiency 2" Edition Composite Score, WASI-I Wechsler Abbreviated Scale of

Intelligence - II, WJ3-Basic Woodcock Johnson-lIl Basic Reading Composite Score

Table 3 ANOVA of mean FA values for tracts of interest with significant groups confirmed via Tukey—Kramer post-hoc tests

Tract DD +ADHD DD (n=40) M (SD) TD (n=20) M (SD) F(2,79) P np2 Tukey-Kramer
(n=22)M (SD) post-hoc tests

Frmajor 0.56 (0.05) 0.59 (0.05) 0.59 (0.04) 239 0.098 0.06 n/a

Fminor 0.52 (0.04) 0.53 (0.03) 1(0.03) 1.26 0.290 0.03 n/a

LILF 047 (0.03) 048 (0.03) 0.48 (0.03) 147 0.236 0.04 n/a

LSLFp 043 (0.02) 0.44 (0.03) 0.45 (0.02) 3.90 0.024 0.08 TD>DD+ADHD

L SLFt 043 (0.03) 045 (0.02) 046 (0.02) 6.13 0.003 0.13 TD>DD+ADHD

L UF 0.36 (0.03) 0.35 (0.06) 0.35 (0.06) 0.29 0.751 >0.01 n/a

RILF 047 (0.02) 048 (0.03) 0.48 (0.03) 1.51 0.228 0.04 n/a

RSLFp 043 (0.03) 044 (0.02) 045 (0.02) 3.33 0.041 0.08 TD>DD+ADHD

R SLFt 043 (0.02) 044 (0.02) 0.44 (0.02) 3.72 0.029 0.09 TD>DD+ADHD

RUF 0.37 (0.03) 0.38 (0.04) 0.37 (0.05) 0.13 0.879 >0.01 n/a

M Mean, SD Standard deviation, Bolded Statistically significant values, DD Developmental dyslexia, DD+ ADHD Developmental dyslexia comorbid with attention
deficit/hyperactivity disorder, TD Typical developing, unimpaired readers, FA Fractional Anisotropy, L Left, R Right, Fmajor Forceps major, Fminor Forceps minor, ILF
Inferior longitudinal fasciculus, SLFp Superior longitudinal fasciculus parietal bundle, SLFt Superior longitudinal fasciculus temporal bundle, UF Uncinate fasciculus

significant correlations with mean FA included the
following: TOWRE-CST and L SLFp (r (80)=0.220,
p=0.047) and L SLFt (r (80)=0.269, p=0.015); BRI-T
and L UF (r (80)=0.229, p=0.036); GEC-T and L SLFp
(r (80)=-0.240, p=0.030), L SLFt (r (80)=-0.232, p=0.036),
and R SLFp (r (80)=-0.263 p=0.017). For mean MD,
correlations were found between the GEC-T and L UF
(r (80)=-0.233, p=0.035); BRI-T and L UF (r (80)=-0.234,
p=0.034). However, no significant correlations were
maintained after correction for multiple comparisons
(Table 5) (Fig. 3).

Discussion

The current study investigated white matter tracts asso-
ciated with reading and attentional/executive function-
ing between three groups: DD+ ADHD, DD, and TD. As
expected, measures of reading and attentional control
were significantly different between groups, with TD
showing the highest scores on all measures, while DD and
DD + ADHD showed no difference in reading but differed
significantly in attentional control (Tables 1 and 2). Mean
FA in bilateral temporal and parietal portions of the SLF
differed between the DD+ ADHD and TD groups, with
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Table 4 Tukey-Kramer post-hoc test results from analysis of variance of mean FA values for tracts of interest

Tract Group Comparisons Mean Difference p 95% Confidence Interval
Lower Bound Upper Bound
L SLFp TD>DD 0.010 0.269 -0.006 0.026
TD>DD+ADHD 0.021 0.018 0.003 0.039
DD >DD+ADHD 0.011 0.236 -0.005 0.026
L SLFt TD>DD 0.015 0.076 -0.001 0.031
TD>DD + ADHD 0.026 0.002 0.008 0.044
DD >DD+ADHD 0.012 0.179 -0.004 0.027
R SLFp TD>DD 0.007 0.551 -0.009 0.023
TD>DD+ADHD 0.019 0.036 0.001 0.037
DD >DD+ADHD 0.012 0.159 -0.003 0.027
R SLFt TD>DD 0.005 0.637 -0.009 0.020
TD>DD + ADHD 0.018 0.029 0.001 0.034
DD >DD+ADHD 0.012 0.096 -0.002 0.026

Bolded Statistically significant values, DD Developmental dyslexia, DD +ADHD Developmental dyslexia comorbid with attention deficit/hyperactivity disorder, TD
Typical developing, unimpaired readers, FA Fractional Anisotropy, L Left, R Right, SLFp Superior longitudinal fasciculus parietal bundle, SLFt Superior longitudinal
fasciculus temporal bundle

a Mean FA in the Left Superior Longitudinal Fasciculus Parietal Bundle b Mean FA for Right Superior Longitudinal Fasciculus Parietal Bundle
.50 % .50 F "
r |
.45 .45
g g
] g
g 40 g 40
8
35 © 35
30 DD+ADHD DD D 30
+ : DD+ADHD DD hD)
Group Group
C Mean FA in the Left Superior Longitudinal Fasciculus Temporal Bundle d Mean FA for Right Superior Longitudinal Fasciculus Temporal Bundle
*x
.50 f : .50
r B |
.45 .45
g b
§ 5
g 40 < 40
.35 .35
30 DD+ADHD DD TD 30 DD+ADHD DD D
Group Group

Fig. 2 Box and whisker plots for tracts of interest showing significant differences in mean FA values between groups

Note: *=p <.05; **=p <.01; DD=developmental dyslexia; DD+ ADHD =developmental dyslexia comorbid with attention deficit/hyperactivity
disorder; TD =typical developing, unimpaired readers; FA = Fractional Anisotropy

TD showing the highest mean FA (Tables 3 and 4). How-  the bilateral SLF, ILE, UF, or CC. Although previous lit-
ever, there were no significant differences in FA between erature has shown positive associations between ADHD
DD and DD+ ADHD, nor between DD and TD, within and MD in the left SLF, left ILF, and bilateral UF [61, 68,
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Table 5 Pearson’s correlational matrix of brain-behavior relations
before correcting for multiple comparisons

BRI-T GEC-T TOWRE-CST
Fmajor FA -0.08 -0.20 0.10
Fminor FA -0.06 -0.04 -0.13
LILFFA -0.09 -0.18 0.09
L SLFp FA -0.11 -0.24 0.22
L SLFt FA -0.12 -0.23 0.27
L UFFA 0.23 0.21 -0.04
RILF FA -0.04 -0.13 0.06
R SLFp FA -0.17 -0.26 0.16
R SLFt FA -0.03 -0.15 0.18
R UF FA 0.15 0.14 -0.08
Fmajor MD -0.02 0.09 0.09
Fminor MD -0.15 -0.12 0.19
L ILF MD -0.07 0.04 0.18
L SLFp MD -0.06 0.02 0.06
L SLFt MD -0.09 0.01 0.11
L UFMD -0.23 -0.23 0.13
RILF MD -0.04 0.06 0.12
R SLFp MD -0.07 >0.01 0.02
R SLFt MD -0.09 0.02 0.05
R UF MD -0.21 -0.14 0.10

Bolded statistically significant values (p < 0.05) before correcting for multiple
comparisons, BRI-T Behavioral Regulation Index T Score taken from the

Behavior Rating Inventory of Executive Function (BRIEF), GEC-T Global Executive
Composite T Score taken from BRIEF, TOWRE-CST Test of Word Reading Efficiency
2" Edition Composite Score, FA Fractional Anisotropy, MD Mean Diffusivity,

L Left, R Right, Fmajor Forceps major, Fminor Forceps minor, ILF inferior
longitudinal fasciculus, SLFp Superior longitudinal fasciculus parietal bundle,
SLFt Superior longitudinal fasciculus temporal bundle, UF Uncinate fasciculus

79], no significant group differences were observed in any
tract of interest for mean MD.

As expected, our results support the TD group as supe-
rior readers with the strongest attentional control and
highest white matter diffusivity bilaterally in the parietal
and temporal regions of the SLF [6, 58]. The DD+ ADHD
group on the other hand displayed the lowest scores on
behavioral measures of attentional control and the lowest
FA results in bilateral parietal and temporal regions of the
SLE. The DD group’s results fell between the DD+ ADHD
and TD groups on attentional control as well as FA bilat-
erally in both regions of the SLE, while at the same time
showing more similar reading deficits to the DD+ ADHD
group. Although there were significant differences
in reading and attentional control between diagnos-
tic groups, only trends for brain-behavior correlations
were observed once corrected for multiple comparisons.
TOWRE-CST was signficantly different between groups
and there were trends for postive relations between
TOWRE-CST and mean FA in the left temporal and
parietal regions of the SLF across groups. Furthermore,
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there was a trend for negative relations between GEC-T,
with a higher score indicating worse exectuive funtion,
and mean FA in the left temporal and parietal regions
and the right parietal regions of the SLF across groups.
Taken together, our results begin to suggest that as mean
FA in the SLF decreases, so does performance on reading
and attentional control measures, proposing a continu-
ous effect of the underlying SLF white matter diffusivity
on behavior. It is important to note that this possible
continuum effect is only reflected in the effects on brain
structure, not on behavioral outcomes as our data did not
show significant differences in reading between the DD
and DD+ ADHD groups.

Accordingly, previous research also has suggested that
children with comorbid DD and ADHD may exist as a
third phenotype independent from sole DD or ADHD
conditions [13-16]. Results from the current study sup-
port the suggestion of a dual or specific role of the SLF
as potentially underlying such comorbid DD and ADHD
symptomatology, whether considered as a dual diagnosis
or an independent phenotype. In regards to the tracts of
interest investigated within this study, only the SLF has
been identified as a primary white matter tract associated
with both the dorsal phonological system of the reading
network [6] and attentional control network [43]; there-
fore, the main underlying factor within the comorbid
group may be due to top-down and bottom-up effects of
attentional control interacting with the external learning
environment at hand. Indeed, distractors in high-difficult
tasks have shown to be positively associated with reliance
on bottom-up processing, whereas distractors in low-dif-
ficult tasks have been positively associated with reliance
on top-down processing for individuals with ADHD,
indicating a detrimental association between distract-
ibility and task difficulty [96]. Moreover, reading ability
may rely on the balanced integration of top-down and
bottom-up processing. In comparison to typical readers,
individuals with DD showed reduced functional connec-
tivity between the neural substrates of top-down and bot-
tom-up processing [97] and reduced activation of frontal
and parietal cortical areas associated with the attentional
control network during reading tasks [98]. Likewise,
individuals with comorbid reading disability and ADHD
have shown specific deficits in frontal regions within the
frontal-striatal pathway [48], which has been function-
ally related to impairments in executive functioning [47,
49], an ability central to the attentional control network.
Nonetheless, Langer and colleagues [49] have further
associated specific grey matter deficits within the reading
network to a reduced reading ability in comorbid reading
disability and ADHD individuals.

Given the profound reading impairment within indi-
viduals with DD, the highly demanding task of reading
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Fig. 3 Scatterplots for brain behavior relations of significance before correcting for multiple comparisons within tracts of interest showing

significant differences in mean FA values between groups

Note: DD =developmental dyslexia; DD+ ADHD =developmental dyslexia comorbid with attention deficit/hyperactivity disorder; TD =typical
developing, unimpaired readers; GEC-T=Global Executive Composite T Score taken from the Behavior Rating Inventory of Executive Function;
TOWRE-CST=Test of Word Reading Efficiency 2" Edition Composite Score; FA= Fractional Anisotropy; L=Left; R=Right; SLFp =superior longitudinal
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may be further impeded by a dysfunctional attentional
control network that moderates top-down and bottom-
up processing. This suggests that the SLF, critically
employed within both the reading and attentional con-
trol networks, may be a main contributor for the success-
ful integration of top-down and bottom-up processing
necessary for efficient reading and attentional control.
Therefore, one of the primary deficits associated with the
comorbid DD and ADHD (particular to ADHD-I) pheno-
type may be attributed to this additive effect of reduced
diffusivity of the SLE, constituting the continuum of FA
found within our sample. The consequences of differ-
ential white matter integrity in the SLF may be a funda-
mental factor in attentional control, with DD+ ADHD
exhibiting poor attentional control and TD exhibiting
superior attentional control. Accordingly, a conjunc-
tion analysis of studies assessing grey matter differences
within ADHD and DD populations found reduced grey
matter volume only within the right caudate nucleus of
the striatum [50], which compliments the sole finding of
reduced grey matter volume within regions of the fron-
tal-striatal pathway for individuals with comorbid read-
ing disability and ADHD [48]. However, as seen in the
behavioral measures of reading, the FA differences found
within the SLF may not be explicitly additive to reading
impairments in DD+ ADHD individuals, as the reading
network is comprised of several white matter tracts out-
side the attentional control network [2].

Similarly, white matter diffusivity of the ILF has been
associated with both attentional control and reading.
Encompassing language systems of logographic phono-
logical alphabets, adults with ADHD [68] and children
with DD [59] have been shown to have decreased FA in
the ILF compared to controls. In our sample, there was
a trend for FA group differences within the ILF similar
to the continuum effect shown in the SLE. This may sup-
port previous evidence of the effect of ADHD on white
matter diffusivity beyond those tracts directly associated
with the attentional control network [68]. Although this
effect may be detrimental in the case of top-down and
bottom-up processing attributed to the attentional con-
trol network for individuals with DD and/or ADHD, the
suggested third phenotype of comorbid DD+ ADHD
may show different properties of white matter tract diffu-
sivity within the attentional control network, yet similar
diffusivity within the reading network.

Contrary to previous findings concerning white mat-
ter diffusivity for individuals with DD [59, 61, 68, 72, 73,
75, 78, 79], mean FA for the ILF, UF, and CC were not
significantly different between the DD and TD groups,
nor between the DD+ ADHD and TD groups. Accord-
ingly, previous research has shown DD to be associ-
ated with a decrease in FA within the UF [72], whereas

Page 11 of 15

ADHD research has shown an increase in FA within the
same tract [61, 73]; however, there were no statistically
significant differences between the DD and DD+ ADHD
groups in the UF in the current study. If there is a con-
tinuum effect in the UF that is similar to that observed
in the SLE, with the lowest performing readers having
decreased white matter diffusivity, this impact may be
counteracted in the current sample due to the potential
inverse effects of comorbid ADHD on diffusivity proper-
ties. Therefore, shared genetic influences between ADHD
and DD [14, 15] may impose potential differing effects
on white matter within the UF and ILF (i.e., the reading
network) yet potential additive effects within the SLF
(i.e., the attentional control network) that exist on a con-
tinuum, with DD lying in between DD+ ADHD and TD.

Limitations
Although decreased white matter diffusivity in the CC
has been considered an integral component underlying
the DD phenotype [75, 76] and has also been observed
in individuals with ADHD [78, 79], no significant results
indicating group differences for FA were found. Out-
side the previously discussed additive and counteracting
effects of DD and ADHD on white matter, these results
may be mainly due to the tract segmentation methods
used in the current study. TRACULA utilizes a broad
extraction of whole tract mean FA, yet evidence suggests
that differences in white matter diffusivity for individuals
with DD may lie in smaller regions of the CC [75]. Fol-
lowing the segmentation of the CC into smaller regions,
previous research has shown that individuals with DD
have increased mean FA in the splenium [99, 100] and
have an abnormally shaped splenium, rostrum, genu,
and body of the CC [101]. Therefore, a limitation of the
current study may be the use of TRACULA, as it utilizes
probabilistic tractography for segmenting tracts of inter-
est and for quantifying white matter diffusivity. It is pos-
sible that group differences between our tracts of interest
may only be found in smaller segments within the tract;
therefore, performing a region of interest analysis may
provide different results in tracts such as the ILF, UF, and
CC. However, TRACULA utilizes individualized subject-
specific anatomical landmarks, which allows for the reli-
able reconstruction of white matter pathways without
manual intervention that potentially decreases researcher
bias [102]. This is particularly important in the current
sample, as other atlas-based tractography methods use
adult standardized templates that may not be appropriate
for the developing brain.

Similarly, there were no significant differences
observed in MD between groups for any of the tracts of
interest. Although changes in MD have been reported
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in individuals with ADHD, there is less evidence of dif-
ference in MD associated with DD. Differences between
ADHD and typically developing controls is most fre-
quently reported in adult ADHD populations [61, 68].
These differences may be in part to the limited age range
(i.e., 7 to 11 years) represented in the current sample.
Although most rapid microstructural changes occur in
the first 24 months of age, maturation rates in diffusiv-
ity measures have been shown to progress at different
rates, with MD changes developing much slower than FA
[103-105]. This is particularly true for tracts associated
with language and cognitive processing such as the SLF
and UF. Differences in FA but not MD observed in the
current study may have been, in part, due to maturational
differences in the diffusion measures used.

Finally, the absence of an ADHD-only comparison
group is a potential limitation of the current study. How-
ever, our primary aim was to investigate the differences
in DD populations with and without ADHD to better
understand the differences and similarities of the co-
morbid condition in comparison to the’pure’ DD. Due
to the nature of the overarching study, we were unable to
collect a pure ADHD sample, which prevented us from
directly assessing the impact of attentional deficits alone
on white matter diffusivity. Future research will benefit
from the inclusion of all four potential groups: TD, DD
only, ADHD only, and DD+ADHD co-morbid sam-
ples. Similarly, future research should further evaluate
the contribution of comorbidity to DD observed in ide-
ographic language.

Conclusions

Our results indicate that neurostructural differences
in the SLF may occur in children with DD+ ADHD in
comparison to TD. Results suggest that differences in
white matter diffusivity may exist on a continuum, with
DD +ADHD having the lowest mean FA compared to
DD only or TD groups. Differences in FA in these specific
tracts may underlie the severity of specific behavioral
impairments seen in comorbid DD + ADHD when com-
pared to those children with only DD exclusively.
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ADHD Attentional deficit/hyperactivity disorder

ADHD-C Comorbid inattentive hyperactive subtype of attentional
deficit/hyperactivity disorder

ADHD-I Inattentive subtype of attentional deficit/hyperactivity disorder

BRI-T Behavioral Regulation Index T Score taken from BRIEF

BRIEF Behavior Rating Inventory of Executive Function

CcC Corpus callosum

DBRS Disruptive Behavior Rating Scale

DD Developmental dyslexia

DD+ADHD  Developmental dyslexia comorbid with attention deficit/

hyperactivity disorder
DTl Diffusion tensor imaging
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FA Fractional anisotropy

Frmajor Posterior CC; forceps major

Fminor anterior CC; forceps minor

GEC-T Global Executive Composite T Score taken from BRIEF

IFG Inferior frontal gyrus

ILF Inferior longitudinal fasciculus

IPL Inferior parietal lobule

L Left

MFG Middle frontal gyrus

R Right

SLF Superior longitudinal fasciculus

SLFp Superior longitudinal fasciculus parietal bundle

SLFt Superior longitudinal fasciculus temporal bundle

SWAN Strengths and Weaknesses of ADHD symptoms and Normal
Behavior

iIB) Typical developing, unimpaired readers

TOWRE-CST  Test of Word Reading Efficiency 2nd Edition Composite Score

TPA Temporal parietal area

UF Uncinate fasciculus

WASIH-II Wechsler Abbreviated Scale of Intelligence I
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