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Abstract 

Background While autism spectrum disorder has been associated with various organizational and developmental 
aberrations in the brain, an increase in extra-axial cerebrospinal fluid volume has recently garnered attention. A series 
of studies indicate that an increased volume between the ages of 6 months and 4 years was both predictive of the 
autism diagnosis and symptom severity regardless of genetic risk for the condition. However, there remains a minimal 
understanding regarding the specificity of an increased volume of extra-axial cerebrospinal fluid to autism.

Methods In the present study, we explored extra-axial cerebrospinal fluid volumes in children and adolescents ages 
5–21 years with various neurodevelopmental and psychiatric conditions. We hypothesized that an elevated extra-axial 
cerebrospinal fluid volume would be found in autism compared with typical development and the other diagnostic 
group. We tested this hypothesis by employing a cross-sectional dataset of 446 individuals (85 autistic, 60 typically 
developing, and 301 other diagnosis). An analysis of covariance was used to examine differences in extra-axial cer-
ebrospinal fluid volumes between these groups as well as a group by age interaction in extra-axial cerebrospinal fluid 
volumes.

Results Inconsistent with our hypothesis, we found no group differences in extra-axial cerebrospinal fluid volume in 
this cohort. However, in replication of previous work, a doubling of extra-axial cerebrospinal fluid volume across ado-
lescence was found. Further investigation into the relationship between extra-axial cerebrospinal fluid volume and 
cortical thickness suggested that this increase in extra-axial cerebrospinal fluid volume may be driven by a decrease in 
cortical thickness. Furthermore, an exploratory analysis found no relationship between extra-axial cerebrospinal fluid 
volume and sleep disturbances.

Conclusions These results indicate that an increased volume of extra-axial cerebrospinal fluid may be limited to 
autistic individuals younger than 5 years. Additionally, extra-axial cerebrospinal fluid volume does not differ between 
autistic, neurotypical, and other psychiatric conditions after age 4.
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Introduction
Autism spectrum disorder (ASD) is a heterogeneous neu-
rodevelopmental condition typified by deficits in social 
communication and the presence of restricted repetitive 
behaviors (Diagnostic and Statistical Manual-5 [DSM-5]; 
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[1]). As a neurodevelopmental condition, ASD is associ-
ated with aberrant trajectories in social, cognitive, and 
physiological development. For example, one well-repli-
cated finding is that of an increased brain volume [2–5] 
and head size in comparison with typically developing 
children [6–9]. Likewise, task-based and resting state 
functional connectivity research indicates that autistic 
children may undergo a transition from hypoconnectiv-
ity [10–12] to hyperconnectivity [13–15], with puberty as 
the proposed time of transition [16].

Beyond these atypical patterns in neurodevelopment, 
intervention can alter the course of social and cogni-
tive autistic development. For instance, previous work 
[17] has indicated that earlier intervention results in 
improved behavioral outcomes (although the nature of 
those outcomes is debated, see [18]). In order to facilitate 
that earlier intervention, investigators have called for the 
identification of biomarkers that could assist in the diag-
nosis of ASD [19]. However, in order for such biomark-
ers to emerge, specificity to the condition of interest must 
be established. This is particularly important when there 
is significant overlap in symptomatology and underlying 
etiology, as well as high rates of comorbidity, between the 
target condition and other conditions.

Shared symptomatology
One challenge to distinguishing between ASD and other 
neurodevelopmental or psychiatric conditions such as 
generalized anxiety disorder (GAD), social anxiety disor-
der, attention-deficit hyperactivity disorder (ADHD), and 
specific learning disorders is the significant overlap of 
traits, symptoms, and characteristics. Autism spectrum 
disorder is defined by characteristic deficits in social 
behavior and communication as well as repetitive behav-
iors and interests, with the understanding that there is 
significant variation in severity, clinical presentation, and 
level of functioning [1]. The overlap in syndromal pres-
entation in areas such as social interaction or cognitive 
deficit can make it difficult to discriminate between ASD 
and other conditions. For example, the DSM-5 princi-
pally defines social anxiety disorder by social avoidance 
and fear of negative evaluation, which could be mistaken 
for the social communication deficit present in ASD [1]. 
Autism spectrum disorder and generalized anxiety dis-
order present considerable symptomatic overlap such 
as with excessive worry, self-consciousness, difficulty 
identifying and expressing emotion, obsessive behav-
ior, trouble with concentration, a compulsive need for 
routines and continuity, agitated behavior, and phobias 
[20]. Findings from studies comparing individuals with 
ADHD and ASD diagnoses suggest a similar overlap. For 
example, one comparison study was unable to identify a 
reliable difference in cognitive abilities between autistic 

individuals and individuals with ADHD on measures 
such as attention and arousal, response inhibition, work-
ing memory, interference control, and processing speed 
[21].

In a study examining rates of comorbid psychiat-
ric disorders in autistic children, 70% of participants 
had at least one comorbid disorder, with the two most 
prevalent of these comorbidities being social anxiety 
disorder (29.2%) and ADHD (28.1%) [22]. Additionally, 
research has reported that 39.6% of adolescent autistic 
individuals qualified for at least one comorbid anxiety 
disorder under the Diagnostic and Statistical Manual of 
Mental Disorders, Fourth Edition [23]. However due to 
the complexity of syndromal overlap, the estimation of 
comorbid prevalence is not always so clean. For exam-
ple, comorbid rates of ASD and reading disorder (a spe-
cific learning disorder) can vary from as low as 6% to 
up to 30% [24]. In parallel, it is estimated that anywhere 
between 30 and 80% of autistic individuals also qualify 
for a diagnosis of ADHD, and that ASD is present in 
20–50% of individuals with ADHD [25, 26].

A potential biomarker
Essential to the diagnosis of these conditions is specific-
ity to the condition at hand, both with regard to neural 
mechanisms as well as for other biomarkers. Effective 
biomarkers can distinguish between conditions with high 
rates of co-occurrence and similar symptomology.

One candidate biomarker, an increased volume of 
extra-axial cerebrospinal fluid (EA-CSF), is amassing 
credibility due to both theoretical significance and empir-
ical evidence. Cerebrospinal fluid (CSF) plays an essential 
role in the development of the brain, maintaining home-
ostasis within the cerebral interstitial fluid, regulating the 
electrolyte balance, and eliminating catabolites [27]. Fur-
thermore, in early development, CSF distributes growth 
factors which signal progenitor cells to proliferate into 
immature neurons, which later migrate to different areas 
of the cerebral cortex [28]. Together, these key roles place 
CSF in a position to impact neurodevelopment.

In addition to the extensive role of CSF in develop-
ment, empirical evidence linking EA-CSF volume to 
ASD has come forward. EA-CSF volume has been oper-
ationalized as the amount of cerebrospinal fluid sur-
rounding the dorsal convexity of the cerebral cortex in 
the subarachnoid space and was found to be increased 
in infants and children ages 6 months to 4 years who 
would later be diagnosed with autism. This relation-
ship was documented in three separate samples and 
studies [29–31]. In each of these studies, an increased 
volume of EA-CSF preceded the onset and severity 
of the autism diagnosis and symptoms, regardless of 
genetic risk [29–31]. Interestingly, in an accelerated, 
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multi-cohort longitudinal study of participants 3–42 
years, no difference in EA-CSF volume between the 
ASD and control groups was found, suggesting that 
EA-CSF volume may normalize after age 4 in ASD [32]. 
Despite this evidence, temporal precedence alone can-
not establish causality [33]. Among other elements, 
specificity must also be established. Thus, in their 2020 
study, Murphy and colleagues [34] examined EA-CSF 
volumes in 1–2 years old typically developing children 
and children at risk for schizophrenia, finding no differ-
ence in EA-CSF volume between the two groups. Given 
the symptom overlap and frequent co-occurrence of 
anxiety disorders, ADHD, and other neurodevelopmen-
tal conditions with ASD, it is important to determine 
if an increased volume of EA-CSF is specific to ASD in 
comparison with these conditions.

EA‑CSF volume and sleep disturbances
In addition to understanding the specificity of an 
increased volume of EA-CSF to ASD, it is important to 
identify the potential ramifications of this disruption for 
specific behaviors. Highly prevalent to psychopathology 
and found in almost every major psychiatric condition 
are sleep disturbances [35]. In ASD specifically, there is 
an increased incidence of sleep problems compared with 
typical development that begin before age 2 and persist 
across the lifespan (reviewed in [36]). Sleep disturbances 
are also documented in individuals with anxiety and 
related conditions and may predict the development of 
an anxiety disorder [37, 38].

One potential mechanism behind this relationship 
between sleep disturbances and psychopathology may be 
CSF flow. CSF plays a crucial role in maintaining cerebral 
homeostasis, and its contents can reflect specific brain 
states, including satiety, sleep, and disease (reviewed in 
[39]). During natural sleep and anesthesia, the flow of 
CSF is increased, and there is an increased rate of beta-
amyloid clearance and other neuropeptides during sleep 
compared to wakefulness in an animal model [40]. In 
humans, sleep results in greater glymphatic clearance in 
comparison with awake states [41] and a night of sleep 
deprivation [42]. Thus, disturbances to sleep appear to 
result in changes to CSF exchange and flow rates, impact-
ing neuronal performance and potentially contributing 
to pathology. This conjecture was evidenced by Shen 
et al. [31], which demonstrated that a subgroup of autis-
tic participants with high EA-CSF volumes (defined as 
1.5 standard deviations or more above the mean) had 
more sleep problems than the other autistic and typi-
cally developing participants. However, it is unknown if 

this relationship between EA-CSF volume and sleep dis-
turbances in autism continues into later childhood and 
adolescence.

EA‑CSF volume and cortical thickness
Beyond examining the consequences of an increased 
volume of EA-CSF, it is also important to consider pos-
sible mechanisms. Due to the close anatomical proximity 
of EA-CSF to the cerebrum, changes in cortical thick-
ness are a reasonable candidate. Such changes to corti-
cal thickness may occur during synaptic pruning events, 
such as that during adolescence when there is a well-doc-
umented decrease in mean cortical thickness [43–45]. 
Such a decrease in cortical thickness could create a defi-
ciency in the subarachnoid space which could then be 
filled with an increase in the volume of EA-CSF as pos-
tulated by Peterson et al. [32]. This relationship between 
a decrease in mean cortical thickness and an increase 
in EA-CSF volume has been evidenced in a longitudinal 
sample of participants 3 to 42 years of age [32]. However, 
it remains to be seen if this finding can be replicated in a 
different sample.

Specific hypotheses
We hypothesize that the volume of EA-CSF will be sig-
nificantly increased in individuals with ASD compared 
to other individuals with neurodevelopmental or psychi-
atric conditions and healthy controls, similar to previ-
ous findings [29–31, 34]. We also hypothesize that there 
will be an effect of age on EA-CSF volume in ASD and 
typical development comparable to that found in [32]. 
Additionally, it is hypothesized that there will be a posi-
tive relationship between sleep problems and EA-CSF 
volume across all groups, as suggested by [31]. Finally, 
we hypothesize that there will be a negative relationship 
between EA-CSF volume and cortical thickness across 
all groups as previously demonstrated [32]. With a cross-
sectional dataset of 446 images from children and adoles-
cents 5–21 years old, we tested these hypotheses.

Materials and methods
Participants
The current study is an analysis of structural magnetic 
resonance imaging (MRI) data that has previously been 
collected at various research sites in accordance with 
Healthy Brain Network protocols; see [46]. This dataset 
has previously been reported on by various teams includ-
ing Mihailov et al. [47], Nentwich et al. [48], and Palumbo 
et al. [49]. Since data collection is ongoing, we used MRI 
and phenotypic data available as of 12/1/2020, and this 
includes data releases 1–7. This particular analysis has 
been preregistered on the Open Science Framework 



Page 4 of 13Peterson et al. Journal of Neurodevelopmental Disorders           (2023) 15:12 

(https:// osf. io/ kbh73), and all codes employed can be 
found on GitHub (https:// github. com/ peter 3200/ HBN_ 
Proje ct). Deviations from the preregistration included the 
approach to fencing outliers in EA-CSF volume, the addi-
tion of two covariates in the main model, and an explora-
tory analysis examining the relationship between EA-CSF 
volume and sleep disturbances. Participants initially 
included 2196 individuals, with 2034 total T1-weighted 
images. After a quality-control process (described in a 
later section) and the implementation of the exclusion 
criteria, the final number of scans included in the analysis 
was 446.

As indicated in Alexander et al. [46], clinical diagnoses 
were determined by licensed clinicians using the com-
puterized web-based version of the Schedule for Affec-
tive Disorders and Schizophrenia—Children’s version 
[50]. Upon completion of this and other assessments 
conducted during study participation, clinically syn-
thesized diagnoses were generated by the clinical team. 
For the purposes of this analysis, diagnostic group was 
determined as follows: participants with an ASD diag-
nosis were included only in the ASD group (N = 85; 67 
males, 18 females), participants with “No Diagnosis 
Given” were included only in the No Diagnosis group (N 
= 60; 35 males, 25 females), and participants with diag-
noses other than ASD or No Diagnosis were included 
in the Other Diagnosis group (N = 301; 179 males, 122 
females). Furthermore, diagnostic groups other than 
ASD were included in the analysis within the overall 
Other Diagnosis group if there were 50 or more T1w 
images available for that specific diagnosis. Those diag-
noses included the following: attention-deficit/hyperac-
tivity disorder-combined, attention-deficit/hyperactivity 
disorder-inattentive, generalized anxiety disorder, social 
anxiety disorder, and specific learning disorder-reading. 

Additional demographic information can be found in 
Table 1. In summary, ASD mean age was 9.98 years, range 
5.25–21.48 years; Other Diagnosis mean age was 10.48 
years, range 5.04–20.29 years; No Diagnosis mean age 
was 9.46 years, range 5.02–19.49 years; and overall mean 
age was 10.25 years, range 5.02–21.48 years (see Fig. 1). 
Furthermore, using the criterion of an average full-scale 
intelligence quotient (IQ) score less than or equal to 79 

Table 1 Demographics

a Group comparisons were initially conducted on each demographic variable using a chi-squared test (biological sex only) or a one-way ANOVA. bPost hoc chi-
squared tests indicated significant group differences in biological sex between the Autism and No Diagnosis groups (χ2 = 6.13, p = .01) and between the Autism and 
Other Diagnosis groups (χ2 = 9.92, p < .01). cFull-scale IQ (WISC): Autism N = 68, Other Diagnosis N = 256, No Diagnosis N = 45. Post hoc, Bonferroni-adjusted t-tests 
indicated significant group differences in full-scale IQ between the Autism and No Diagnosis groups (p < .001) as well as the Other Diagnosis and No Diagnosis groups 
(p < .001). dSocial Responsiveness Scale: Autism N = 77, Other Diagnosis N = 286, No Diagnosis N = 52. Post hoc, Bonferroni-adjusted t-tests indicated significant 
group differences in the Social Responsiveness Scale total score between all groups (p < .001). eSleep Disturbance Scale: Autism N = 69, Other Diagnosis N = 254, No 
Diagnosis N = 44. Post hoc, Bonferroni-adjusted t-tests indicated a significant group difference in the Sleep Disturbance Scale total score between the Other Diagnosis 
and No Diagnosis groups (p < .01)

Autism, N = 85 Other diagnosis, N = 
301

No diagnosis, N = 60 Group 
 comparisona

Mean (SD) Range Mean (SD) Range Mean (SD) Range χ2 or F p

Biological  sexb (male/female) 67 M 18 F 179 M 122 F 35 M 25 F 11.3 < .05

Age (years) 9.98 (3.64) 5.25–21.48 10.48 (3.21) 5.04–20.29 9.46 (3.31) 5.02–19.49 2.76 .06

Full-scale  IQc 97.15 (21.78) 51–147 98.66 (15.79) 59–143 112.18 (13.25) 85–145 13.64 < .001

Social Responsiveness Scale total (raw)d 80.27 (27.42) 18–147 50.29 (28.07) 3–146 28.06 (16.6) 4–97 63.87 < .001

Sleep Disturbance Scale for Children total (raw)e 41.48 (10.99) 27–82 42.03 (10.93) 26–84 36.68 (7.07) 26–59 4.82 < .01

Fig. 1 Participant age at scan. Following the quality-control 
procedures, participants included 85 autistic individuals (67 males, 
18 females), 60 individuals with no diagnosis (35 males, 25 females), 
and 301 individuals with a diagnosis other than ASD (179 males, 122 
females). ASD mean age was 9.98 years, range 5.25–21.48 years; Other 
Diagnosis mean age was 10.48 years, range 5.04–20.29 years; No 
Diagnosis mean age was 9.46 years, range 5.02–19.49 years; overall 
mean age was 10.25 years, range 5.02–21.48 years

https://osf.io/kbh73
https://github.com/peter3200/HBN_Project
https://github.com/peter3200/HBN_Project
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to operationalize low verbal and cognitive performance 
[51], it was found that 50 scans came from participants 
with low verbal and cognitive performance (18 ASD, 32 
Other Diagnosis). Additionally, 319 scans came from 50 
ASD participants, 45 No Diagnosis participants, and 224 
Other Diagnosis participants with high verbal and cog-
nitive performance. Of the ASD participants included in 
the analysis, Seventy-eight had a comorbid condition (see 
Table  2 for additional details on comorbid diagnoses in 
ASD).

Behavioral measures
As indicated in Table  1, the Wechsler Intelligence Scale 
for Children-V (WISC; [52]), Social Responsiveness 
Scale-2 [53], and Sleep Disturbances Scale for Chil-
dren [54] were administered to participants as a part of 
the Healthy Brain Network study protocol. The WISC 
was administered to participants 6–17 years old and is 
a measure of cognitive function in children and adoles-
cents. The WISC-V is test-retest reliable and internally 
consistent, with a corrected test-retest reliability coef-
ficient for the full-scale IQ score at 0.92 and estimated 
internal consistency for the overall normative sample 
using split-half reliability at 0.96 [55]. Second, the Social 
Responsiveness Scale is a quantitative measure of the 
various dimensions of interpersonal behavior, communi-
cation, and repetitive/stereotypic behavior characteristic 
of ASD, and this measure was administered to the par-
ents of all participants. The 3-month test-retest reliability 
for this measure is 0.88 in clinical subjects [53]. Addi-
tional psychometric properties of the Social Responsive-
ness Scale have been previously reported (see [56, 57]). 
Finally, the Sleep Disturbances Scale for Children was 
administered to the parents of all participants, and a 
higher total score indicates a greater sleep disturbance. 
Bruni et al. [54] conducted a psychometric evaluation of 
the Sleep Disturbances Scale and found an internal con-
sistency ranging from 0.71 to 0.79 and a test-retest reli-
ability of 0.71.

Image acquisition procedure
This dataset is composed of 446 T1-weighted structural 
MRI scans collected at three different sites in accord-
ance with the Chesapeake Institutional Review Board 
(https:// www. chesa peake irb. com/). Two-hundred sixty-
eight scans were collected in the Rutgers University Brain 
Imaging Center on a 3T Tim Trio MRI scanner, and 
178 scans were collected at the CitiGroup Cornell Brain 
Imaging Center on a 3T Siemens Prisma scanner. Fur-
thermore, no scans collected at the mobile trailer facil-
ity (equipped with a 1.5T Siemens Avanto system with 45 
mT/m gradients) survived the quality-control protocol. 
Additional details regarding scan sequences and other 
parameters have been reported elsewhere ([46]; http://
fcon_1000.projects.nitrc.org/indi/cmi_healthy_brain_
network/MRI%20Protocol.html).

Image processing
EA-CSF was defined as CSF within the subarachnoid 
space surrounding the dorsal convexity (thus excluding 
all spinal and ventricular CSF), with a ventral bound-
ary at the plane of the anterior and posterior commis-
sures [29–31]. In order to derive the volume of EA-CSF 
from these scans, we implemented a neuroimaging pipe-
line that included the following steps. To begin, the data 
underwent preprocessing via the ANTs tool N4BiasField-
Correction [58]. This step is necessary to correct for bias 
field signal, which can result in non-uniformities in image 
intensity. After this step, resampling via the package c3d 
[59] was undertaken since images acquired at the Staten 
Island facility (the 1.5T Siemens Avanto system) had dif-
ferent voxel dimensions (1.0 mm by 1.0 mm by 1.0 mm) 
than the other two sites (0.8 mm by 0.8 mm by 0.8 mm). 
All images were resampled to 1.0-mm isotropic voxels.

Following these preprocessing steps, we processed the 
structural images with the Automatic Extra-axial Cer-
ebrospinal Fluid (Auto EACSF) pipeline version 1.7.7 
[30]. The pipeline registers, skullstrips, and then seg-
ments each T1-weighted image. After segmentation, with 

Table 2 Comorbid conditions in  ASDa

a Each table row indicates the number of ASD participants with a comorbid diagnosis. Columns indicate a third comorbid diagnosis. For example, the first column of 
the first row represents the number of participants diagnosed with ASD and ADHD combined type (N = 40). The third column of the first row represents the number 
of participants diagnosed with ASD, ADHD combined type, and generalized anxiety disorder (N = 5)

ADHD combined 
type

ADHD inattentive 
type

Generalized anxiety 
disorder

Social anxiety 
disorder

Specific learning 
disorder‑reading

ADHD combined type 40 0 5 0 6

ADHD inattentive type - 21 3 3 1

Generalized anxiety disorder - - 8 1 2

Social anxiety disorder - - - 6 0

Specific learning disorder-reading - - - - 9

https://www.chesapeakeirb.com/
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a ventricle mask and template as input, the tool generates 
a progressive series of images such that any ventricular 
or cistern CSF is gradually eradicated from one image to 
the next. After inspecting the intermediate output files, 
it was determined that the output file with the suffix 
“MID02” was most accurate at approximating EA-CSF 
(later output files such as the “QCistern” file tended to 
be overaggressive in stripping away EA-CSF). Finally, the 
computational morphometry toolkit was employed to 
calculate the number of CSF voxels in each MID02 file. 
See GitHub (https:// github. com/ peter 3200/ HBN_ Proje 
ct) for all code employed to run preprocessing and pipe-
line applications.

The estimated total intracranial volume (eTIV) for each 
participant was extracted as a control measure since a 
significant difference in total brain volume was found 
between the ASD and control groups in previous work 
by Shen and colleagues [29–31]. To extract eTIV, images 
were automatically processed with the FreeSurfer analy-
sis suite version 7.1.1, which is documented and freely 
available for download online (http:// surfer. nmr. mgh. 
harva rd. edu/). Additionally, mean cortical thickness was 
also extracted since work by Peterson et  al. [32] dem-
onstrated a negative relationship between EA-CSF vol-
ume and mean cortical thickness. The technical details 
of these procedures are described in prior publications 
[60–73]. Freesurfer morphometric procedures have been 
demonstrated to show good test-retest reliability across 
scanner manufacturers and across field strengths [69, 72].

Visual quality control
Both the raw T1-weighted images and Auto EACSF out-
put images for all participants underwent visual quality 
control, such that four raters each rated half of the data-
set. The raters trained on a set of separate datasets and 
after achieving an intraclass correlation greater than 0.90 
went on to rate the study images.

Raw T1-weighted images were assessed for qual-
ity and the presence of motion artifacts, using a previ-
ously described four-scale rating system [74]. The output 
images from Auto EACSF were assessed for the quality of 
segmentation using the rating scale and standard images 
developed by [34]. Thus, two scores were assigned to 
each scan: a structural quality score and a segmentation 
quality score. Only scans with a structural score less than 
three and a segmentation score less than two (no abnor-
malities in segmentation or minor under- or overesti-
mation of EA-CSF in one region) were included in this 
study [34]. The raters were blinded to the identities of 
the images, and the overall interrater reliability was 0.95 
before discrepancies in ratings were resolved. If raters 
differed in their ratings, a third rater was brought in to 
reconcile the ratings.

The initial dataset was comprised of 2034 scans (ASD: 
243, Other Diagnosis: 1612, No Diagnosis: 179; see Fig. 2 
for the total number of scans included in the analysis). Of 
these, 1241 scans failed the segmentation protocol (ASD: 
151, Other Diagnosis: 980, No Diagnosis: 110), and 505 
scans failed the raw T1-weighted image protocol (ASD: 
69, Other Diagnosis: 402, No Diagnosis: 34). The EA-CSF 
segmentation rating was not significantly associated with 
the Social Responsiveness Scale score (r = 0.05, t(1458) 
= 1.94, p = .05), but it was significantly correlated with 
full-scale IQ (r = −0.07, t(1257) = −2.67, p = .008), indi-
cating that as full-scale IQ decreased, the quality of the 
scan also decreased (resulting in a greater quality-control 
rating).

Statistical analysis
The analysis began with the fencing of outliers in EA-CSF 
volume, which, in a slight deviation from the preregistra-
tion, were identified for each year of age instead of for 
all ages collectively. The lower fence was set at the first 
quartile minus 1.5 multiplied by the difference between 
the third and first quartiles, while the upper fence was set 
at the third quartile plus 1.5 multiplied by the difference 
between the third and first quartiles. After the fencing of 
outliers, linearity and heteroskedasticity were evaluated 
in pairwise plots which were followed by the Shapiro-
Wilk test for normality [75]. Next, the homogeneity of 
regression slopes and homoscedasticity of residuals for 
all groups were evaluated via Levene’s test.

In order to test our hypotheses, an analysis of covari-
ance (ANCOVA) was used to determine if there were any 
statistically significant group effects on EA-CSF volume. 
The following predictors and covariates were included 
in the model: diagnostic group, mean-centered age, 
mean-centered  age2, scan site, sex, mean-centered eTIV, 
mean-centered  eTIV2, a mean-centered age by group 
interaction, and a mean-centered  age2 by group interac-
tion. The estimated total intracranial volume covariates 
were not originally included in the preregistration and 
were included in the model after evaluating the need to 
control head size over age (given that we are interested 
in age effects on EA-CSF volume). Additionally, for the 
purposes of the cortical thickness analysis, total mean 
cortical thickness was operationalized as the sum of the 
mean cortical thicknesses from each hemisphere divided 
by two. All analyses were performed in R 4.2.0 [76], and 
the package car was used to perform the ANCOVA [77].

Results
Group, age, and other covariate effects on EA‑CSF volume
In order to test the hypothesis that there are group dif-
ferences in EA-CSF volume in children and adolescents, 
we used an ANCOVA. Among other assumptions, 

https://github.com/peter3200/HBN_Project
https://github.com/peter3200/HBN_Project
http://surfer.nmr.mgh.harvard.edu/
http://surfer.nmr.mgh.harvard.edu/
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this statistical test assumes that the residuals are nor-
mally distributed, and variance is homogenous across 
all groups. We formally tested these two assumptions: 
the Shapiro-Wilk test for normality indicated that the 
residuals are not normally distributed (W = 0.99, p < 
.001), and Levene’s test indicated that there is homoge-
neity of variance for the three groups (F(2, 443) = 2.36, 
p = 0.09).

Following assumptions testing, the main ANCOVA 
analysis was performed. A significant effect of age on EA-
CSF volume was found (F(1, 433) = 44.85, p < .001, η2 
= 0.04) in addition to a significant eTIV effect (F(1, 433) 
= 132.56, p < .001, η2 = 0.12). This suggests that in this 
sample of children and adolescents, age and eTIV are 
contributors to EA-CSF volume. As demonstrated in 
Fig. 3, the relationship between age and EA-CSF volume 
is positive and linear. There was also a significant effect 
of the intercept (F(1, 433) = 1697.82, p < .001). Interest-
ingly, there was neither a significant effect of diagnostic 
group on EA-CSF volume (F(2, 433) = 2.69, p = .07, η2 
= 0.01), nor a significant group by age interaction (F(2, 
433) = 0.34, p = 0.72, η2 = 0.001). Thus, contrary to our 
hypothesis, there is no difference in EA-CSF volume 

between the No Diagnosis, ASD, and Other Diagnosis 
groups. Additionally, no significant differences between 
groups were observed after re-centering age at 5 (F(2, 
433) = 1.23, p = 0.29), 10 (F(2, 433) = 2.74, p = .07), 15 
(F(2, 433) = 2.27, p = 0.11), and 20 (F(2, 433) = 1.95, p = 
0.14) years.

Given the primary aim of this study in testing the spec-
ificity of potential differences in EA-CSF volume to ASD, 
a series of exploratory analyses comparing ASD and each 
other diagnosis included within the “Other Diagnosis” 
group were conducted. These consisted of multiple linear 
regressions with EA-CSF volume as the dependent vari-
able, a binary group variable, and each of the covariates 
included in the main model as previously described. In 
order to control for comorbidity, autistic participants 
with a concurrent diagnosis of the specific diagnostic 
group being tested against were dropped from the analy-
sis. No significant group differences in EA-CSF volume 
were found post-Bonferroni correction (α = .01) for the 
ADHD combined type (t(147) = 2.02, p = .05), ADHD 
inattentive type (t(163) = 2.08, p = .04), generalized 
anxiety disorder (t(122) = −1.84, p = .07), social anxiety 

Fig. 2 Number of scans included in the analysis. Following the quality-control protocols and diagnostic group determination procedure (as 
outlined in the study pre-registration), 446 total T1-weighted images were included in the analysis
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disorder (t(114) = −1.85, p = .07), and specific learning 
disorder-reading (t(148) = −1.74, p = .08) analyses.

Differences in brain volume between ASD and neu-
rotypical controls have been widely reported in the lit-
erature. However, to be sure that the choice to use eTIV 
covariates instead of total brain volume covariates did 
not change the overall outcome, a separate ANCOVA 
model was ran using total brain volume covariates sub-
stituted for the eTIV covariates. Similar to the reported 
results that included eTIV covariates, there was neither a 
significant effect of diagnostic group on EA-CSF volume 
(F(2, 433) = 2.76, p = .06, η2 = 0.01), nor a significant 
group by age interaction (F(2, 433) = 0.63, p = 0.53, η2 = 
0.001).

Sleep disturbances do not predict EA‑CSF volume
In order to better understand the potential relationship 
between EA-CSF volume and sleep disturbances across 
later childhood and adolescence, an exploratory analy-
sis not outlined in the preregistration was performed. 
Of the 446 T1w images included in the initial analysis, 
367 participants ages 5.29–21.48 years (M = 9.94, SD = 
2.7) had available Sleep Disturbances Scale scores and 
were included in this exploratory analysis. After assess-
ing the normality of the residuals using the Shapiro-Wilk 
test, we employed a multiple linear regression, with Sleep 

Disturbances Scale raw total score as the dependent vari-
able and the following predictors: EA-CSF volume, diag-
nostic group, mean-centered age, mean-centered  age2, 
site, sex, mean-centered eTIV, and mean-centered  eTIV2. 
EA-CSF volume was not a significant predictor of the 
Sleep Disturbances Scale raw total score (t(357) = 1.3, p 
= 0.19; see Fig. 4). However, there was a significant group 
difference in Sleep Disturbances Scale raw total scores 
between the No Diagnosis and ASD groups (t(357) = 
−2.33, p = .02). The intercept was also significant (t(357) 
= 9.57, p < .001). Thus, this evidence points to a lack of 
a relationship between EA-CSF volume and sleep distur-
bances in children and adolescents.

Cortical thickness as a predictor of EA‑CSF volume
Following the Peterson et  al. [32] exploratory analysis 
examining the relationship between cortical thickness 
and EA-CSF volume, we aimed to replicate this analy-
sis in a larger sample of children and adolescents. After 
normality assumptions testing (using the same steps 

Fig. 3 No significant difference in EA-CSF volumes between the 
ASD, No Diagnosis, and Other Diagnosis groups. Depicted is the 
linear trajectory of the EA-CSF volumes between 5 and 21 years. No 
significant difference between the three groups was found (group × 
age interaction, F(2, 433) = 0.34, p = 0.72, η2 = 0.001). A linear model 
was used to fit the developmental trajectories for each group. Each 
scan is represented by a circle

Fig. 4 EA-CSF volumes were not a significant predictor of sleep 
disturbances in children and adolescents. Depicted is the lack of a 
relationship between EA-CSF volumes and the covariate-adjusted 
Sleep Disturbance Scale raw total score, (t(357) = 1.3, p = 0.19). 
Sleep Disturbance Scale total scores were adjusted by regressing out 
the effects of mean-centered age, mean-centered  age2, diagnostic 
group (used within a dummy-coded framework where the ASD 
group was always the baseline), site, sex, mean-centered eTIV, and 
mean-centered  eTIV2 using the following formula:  SDSadj =  SDSnat 
— [β1(mean-centered  agenat — mean of mean-centered  agenat) 
+ β2(mean-centered  age2

nat — mean of mean-centered  age2
nat) 

+ β3(groupnat — mean  groupnat) + β4(sitenat — mean  sitenat) + 
β5(sexnat — mean  sexnat) + β6(mean-centered  eTIVnat — mean of 
mean-centered  eTIVnat) + β7(mean-centered  eTIVnat — mean of 
mean-centered  eTIVnat)]. A linear model was used, and each scan is 
represented by a circle
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outlined for the ANCOVA), a multiple linear regression 
was employed with EA-CSF volume as the dependent 
variable and the following predictors: total mean cortical 
thickness, diagnostic group, mean-centered age, mean-
centered  age2, site, sex, mean-centered eTIV, mean-cen-
tered  eTIV2, a mean-centered age by group interaction, 
and a mean-centered  age2 by group interaction. There 
appears to be a negative linear relationship between total 
mean cortical thickness and age such that total mean cor-
tical thickness decreases as age increases (see Fig.  5A). 
A significant negative relationship between total mean 
cortical thickness and EA-CSF volume was found (t(432) 
= −3.41, p < .001), such that as the total mean cortical 
thickness estimate decreases, EA-CSF volume increases 
(see Fig. 5B).

Discussion
In this study, we examined the specificity of an increased 
volume of EA-CSF to autism in a large sample of chil-
dren and adolescents. Contrary to our hypothesis, we 
find no difference in EA-CSF volume between the ASD, 
Other Diagnosis, and No Diagnosis groups. Neverthe-
less, our results indicate that the ASD, Other Diagnosis, 
and No Diagnosis groups experience a linear increase in 
EA-CSF volume between the ages of 5 and 21. This trend 
is consistent with our previous findings [32] which indi-
cated a doubling in EA-CSF volume between late child-
hood and adulthood. Additional analyses investigating 

the relationships between sleep disturbances and EA-
CSF volume, and between cortical thickness and EA-CSF 
volume, were undertaken. No relationship was identified 
between EA-CSF volume and sleep disturbances. How-
ever, in a replication of Peterson et  al. [32], a negative 
relationship between EA-CSF volume and cortical thick-
ness was found.

EA‑CSF volume as a developmentally constrained potential 
biomarker
These results extend the work of Shen and colleagues 
using a saturated sample of children and adolescents with 
diverse neurodevelopmental and psychiatric conditions. 
Previously, EA-CSF volume in relation to ASD has been 
examined in infants 6–24 months old [29, 30] and chil-
dren 2–4 years old [31]. Together, these studies indicate 
that an increased volume of EA-CSF may act as a bio-
marker or stratification marker for autism. As additional 
evidence for this idea, work undertaken by Murphy et al. 
[34] found no relationship between risk for schizophrenia 
and EA-CSF volume at ages 1 and 2. However, in a multi-
cohort accelerated longitudinal design of participants 
3–42 years old, no difference in EA-CSF volume between 
the ASD and typically developing control groups was 
found [32]. Similarly, the present study found no group 
difference in EA-CSF volume in participants 5–21 years 
old, suggesting once more that EA-CSF volume as a 

Fig. 5 The relationship between cortical thickness, age, and EA-CSF volume. A depicts the linear trajectory of total mean cortical thickness across 
ages 5–21. A linear model was used to fit the trajectories, and each data point represents a single scan. B depicts the negative relationship between 
total mean cortical thickness and EA-CSF volume between 5 and 21 years. Cortical thickness was a significant predictor of EA-CSF volume (t(432) = 
-3.41, p < .001). A linear model was used to fit the trajectories, and each data point represents a single scan
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potential biomarker for ASD is likely constrained to a 
developmental period prior to age 5.

Sleep disturbances and EA‑CSF volume in ASD
In an exploratory analysis, we sought to better under-
stand the relationship between sleep disturbances and 
EA-CSF volume. Previously, Shen et al. [31] identified a 
significant positive linear relationship between EA-CSF 
volume and sleep problems, such that greater sleep dis-
turbances were associated with greater volumes of EA-
CSF. Using the Sleep Disturbances Scale for Children, 
we were unable to reproduce the negative relationship 
described by Shen et  al. [31] in this sample. This null 
result may be due to the combination of several factors, 
including differences in sample characteristics and sleep 
measures. Regardless, as this is an exploratory analysis, 
further investigation is needed to verify these results.

Mechanisms for EA‑CSF volume trajectories
As documented in the present study and Peterson et al. 
[32], a doubling in EA-CSF volume occurs across ado-
lescence for participants of all diagnostic groups. One 
potential mechanism influencing this dramatic increase 
in EA-CSF volume is a decrease in cortical thickness. 
Such a decrease in mean cortical thickness is known to 
occur in adolescence via a synaptic pruning event [43–
45]. As proposed in Peterson et al. [32], such a decrease 
in the volume of the cortical mantle would likely result in 
an increase in the space between the pial surface and dura 
mater, creating a deficit that could then be filled with an 
increased volume of EA-CSF. As preliminary evidence for 
this assertion, an exploratory analysis in Peterson et  al. 
[32] found a negative relationship between mean cortical 
thickness and EA-CSF volume. Further evidence for this 
relationship was obtained in an analysis in the present 
study, which has the benefit of a larger sample of chil-
dren and adolescents. Together, these two analyses point 
to a decrease in cortical thickness as a mechanism for an 
increased volume of EA-CSF. But beyond cortical thick-
ness, other factors may be at play, particularly for ASD.

As a neurodevelopmental condition, ASD is associ-
ated with a variety of age-related organizational and 
structural aberrations in the brain. One well-docu-
mented finding in autism research is that of increased 
brain volume [2–5] and head size [6–9]. In a review on 
this subject, Ecker et  al. [19] noted that the increased 
brain volume in autism typically resolves around ages 
6 to 8. Similarly, in a longitudinal study, Aylward et al. 
[2] found that enlarged brain volume and head circum-
ference in autism normalize by approximately age 12. 
However, results recently published by Lee et  al. [78] 
indicate that, at least for their sample of participants 
2–13 years of age, cerebral enlargement in ASD persists 

throughout childhood without normalization, with that 
enlargement largely occurring in boys with dispropor-
tionate megalencephaly. The timing of these findings 
concerning brain volume and head size appears to coin-
cide with the normalization of EA-CSF volume in ASD, 
which may account for the lack of a group difference in 
EA-CSF volume reported here. However, the suggested 
incidence of total brain volume normalization occur-
ring in conjunction with the normalization of EA-CSF 
volume has not been directly observed, and it remains 
to be seen if this relationship can be evidenced.

Limitations and future directions
EA-CSF in this study was operationalized in accordance 
with previous work by Shen and colleagues in order to 
best extend their work. In congruence with that opera-
tionalization, we used the pipeline Auto EACSF, which 
has been found to be reliable with adult MRI scans [32]. 
And to ensure an accurate EA-CSF segmentation, the 
output for each image was visually quality controlled. 
However, this pipeline has only been used on MRI 
scans from adolescents and young adults in one prior 
study [32]. This could potentially be problematic since 
it is still unknown as to if the anterior commissure-
posterior commissure plane retains the same distance 
relative to the top of the intracranial cavity across ado-
lescence and into adulthood.

Also of note, ASD diagnoses in this study were deter-
mined using the computerized web-based version of 
the Schedule for Affective Disorders and Schizophre-
nia—Children’s version, which is not considered the 
gold standard for ASD diagnostics. While licensed cli-
nicians oversaw the diagnostic process, the potential 
validity of the diagnoses given may have been affected. 
As a result, the Other Diagnosis group could include 
individuals with undiagnosed ASD, and the converse 
situation could be true as well. Ultimately, this limi-
tation could affect the reported results and may be 
responsible for the null findings.

Additionally, it should be noted that the majority of 
this sample qualifies as having high verbal and cogni-
tive performance, as defined using the criterion of 
a full-scale IQ score greater than or equal to 79 [51]. 
This may have accounted for the null result and limits 
the generalizability of these findings. In future inves-
tigations, researchers should consider examining the 
relationship between the level of verbal and cognitive 
performance and EA-CSF volume, particularly in autis-
tic participants.

Finally, the greatest limitation of this study resides 
in the age range of the sample examined here. Previ-
ously, EA-CSF volume has been examined in infants 
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and children 6 months to 4 years old. While our study 
expands this age range to encompass children and ado-
lescents 5–21 years old, this does not allow for a direct 
comparison with previous research. Thus, future stud-
ies will need to elaborate upon this work by examining 
EA-CSF volume in younger participants of diverse neu-
rodevelopmental and psychiatric conditions in order to 
determine if an increased volume of EA-CSF is specific to 
autism and for what timeframe.

Conclusions
Inconsistent with our hypothesis, we found no group 
differences in EA-CSF volume in this cohort. These 
results indicate that an increased volume of EA-CSF is 
not specific to autistic individuals within the develop-
mental period examined here.
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