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Abstract

Background: People with Prader-Willi syndrome (PWS) demonstrate social dysfunction and increased risk of autism
spectrum disorder, especially those with the maternal uniparental disomy (mUPD) versus paternal deletion genetic
subtype. This study compared the neural processing of social (faces) and nonsocial stimuli, varying in emotional
valence, across genetic subtypes in 24 adolescents and adults with PWS.

Methods: Upright and inverted faces, and nonsocial objects with positive and negative emotional valence were
presented to participants with PWS in an oddball paradigm with smiling faces serving as targets. Behavioral and
event-related potential (ERP) data were recorded.

Results: There were no genetic subtype group differences in accuracy, and all participants performed above
chance level. ERP responses revealed genetic subtype differences in face versus object processing. In those with
deletions, the face-specific posterior N170 response varied in size for face stimuli versus inverted faces versus
nonsocial objects. Persons with mUPD generated N170 of smaller amplitude and showed no stimulus
differentiation. Brain responses to emotional content did not vary by subtype. All participants elicited larger
posterior and anterior late positive potential responses to positive objects than to negative objects. Emotion-related
differences in response to faces were limited to inverted faces only in the form of larger anterior late positive
potential amplitudes to negative emotions over the right hemisphere. Detection of the target smiling faces was
evident in the increased amplitude of the frontal and central P3 responses but only for inverted smiling faces.

Conclusion: Persons with the mUPD subtype of PWS may show atypical face versus object processes, yet both
subtypes demonstrated potentially altered processing, attention to and/or recognition of faces and their
expressions.
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Background
Prader-Willi syndrome (PWS) is a genetic disorder asso-
ciated with a deletion on paternal chromosome 15q11-13
(deletion subtype, 70% of cases) or duplication of the
maternal chromosome (maternal uniparental disomy
(mUPD), 25% of cases) [1,2]. The phenotype includes
intellectual disabilities, compulsivity, hyperphagia, and in-
creased risks of life-threatening obesity [3,4]. Several stu-
dies have examined possible phenotypic differences in PWS
across these two major genetic subtypes in neuroanatomy
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[5], cognitive performance and adaptive skills [6-8], food-
related behaviors [9,10], and behavioral problems and psy-
chiatric illness [11-15].
Recently, the PWS phenotype description has been ex-

panded to include an increased risk of autism-spectrum
symptomatology, especially in persons with the mUPD
subtype [4,13,16]. Autism spectrum disorders (ASD) in-
clude a triad of impairments in social and communicative
functioning as well as the presence of repetitive behaviors
and interests [17]. Most individuals with PWS do not
meet full criteria for a diagnosis of ASD [18], but com-
pared with others with intellectual disabilities are more
similar to those with ASD in their repetitive behaviors and
social functioning [16]. Although several studies have
compared phenotypic features of PWS versus ASD (for a
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review see [19]), studies of the social impairments that
characterize PWS, including possible mechanisms asso-
ciated with these difficulties, are just beginning [20].
In persons with ASD, symptom severity in the social

domain often correlates with deficits in perceptual face
processing [21,22]. While the range of performance on
tasks involving faces is wide [23], deficits appear to be
most pronounced in more demanding tasks, such as
those involving emotional expressions [24] (for a review
see [25]). Recently, García-Villamisar and colleagues de-
monstrated that emotion recognition abilities and not
face perception per se are associated with social adaptive
functioning in adults with ASD [26].
Individuals with PWS also appear to have difficulties

processing facial emotional expressions. These difficul-
ties are reflected in their poor performance on labeling
complex emotional expressions (depicted by photo-
graphs of the eye region) [27] and limited emotion
recognition beyond the extreme happy and sad expres-
sions [28]. In a recent study comparing parental reports
with their child’s actual ability to recognize emotional
faces, Whittington and Holland observed that parents cor-
rectly judged the ability of their children with PWS to
recognize happiness, yet overestimated their accuracy of
recognizing sadness [15]. Neither the overall accuracy of
participants nor their recognition of specific emotions was
related to their genetic subtype, but correlated with their
intellectual quotient (IQ) and socialization scores [15].
Behavioral assessments of face processing in indivi-

duals with developmental disabilities may be challenging
due to the need for participants to comprehend instruc-
tions and provide overt responses. Psychophysiological
measures, such as event-related potentials (ERPs), have
minimal cognitive demands, as they do not require be-
havioral responses to document processing of presented
information. ERPs can thus circumvent challenges in be-
havioral testing, while reflecting even subtle individual
differences in performance. Previous ERP research on face
processing in typical adults has identified a specific nega-
tive peak that is maximal over the occipito-temporal scalp
regions at 170 ms after stimulus onset (N170), originates
in the fusiform gyrus [29,30], and is sensitive to faces. This
peak is significantly larger in response to faces than ob-
jects [31-34] and for inverted compared with upright faces
[35,36]. In participants with ASD, the N170 response usu-
ally has a smaller than typical amplitude [37,38], atypical
scalp distribution [37,39-41], delayed latency [40], and ap-
pears insensitive to face orientation [40,42]. In the only
ERP study of face perception in PWS involving passive
viewing of upright or inverted faces with direct or averted
gaze, Halit and colleagues reported that while participants
with both genetic subtypes generated delayed N170 re-
sponses to inverted faces regardless of gaze direction, in
persons with mUPD the N170 amplitude varied based on
face orientation (larger for inverted faces) and gaze direc-
tion (larger for averted gaze) [43]. These findings suggest
that adults with the deletion subtype resembled indivi-
duals with ASD with regard to reduced sensitivity to face
orientation, while brain responses of adults with the
mUPD subtype were similar to those of individuals with
ASD in relation to gaze direction.
Importantly, however, success in social interactions de-

pends not only on the ability to process faces differently
from objects but also on the more complex ability to
understand the facial expressions of emotion, a skill that
may be atypical both in ASD and PWS. Even so, electro-
physiological responses associated with processing of
emotional information in faces have not been extensively
studied in individuals with developmental disabilities.
One ERP study in children with ASD suggested reduced
sensitivity to emotional expressions as reflected by the
lack of modulation of N300 (precursor of the adult
N170) response to fearful versus neutral faces [39], while
others observed no emotion-related differences in ERPs
of children or adults with autism or Asperger’s syn-
drome [38,44].
These conflicting findings regarding emotion proces-

sing in ASD could be explained by the specific ERP res-
ponse chosen for analysis. In typical populations, some
studies report modulation of N170 by emotional expres-
sion (for example, [45-47]) and others observe no effects
[48,49]. However, a different ERP response – late posi-
tive potential (LPP) recorded over centro-parietal as well
as frontal scalp regions – is known to vary between
emotional and neutral stimuli [50,51]. This response be-
gins 300 to 500 ms after stimulus onset regardless of
whether participants are explicitly asked to evaluate
emotional content [52]. LPP responses are not face spe-
cific, and have been recorded to a wide range of affective
stimuli including pictures of faces, scenes, objects, and
words, and in tasks that required explicit evaluation as
well as passive viewing (for a review see [53]). Further-
more, while the centro-parietal LPP response may not
distinguish between positive and negative emotional
stimuli [51], the anterior LPP response does vary with
stimulus valence such that negative emotions elicit larger
amplitudes over the right hemisphere while positive
emotions show a similar increase over the left hemis-
phere [54]. Individual differences in LPP responses have
not yet been studied extensively in clinical populations
(for a review see [50]), although Zilber and colleagues
found larger LLP responses to negative stimuli in adults
with greater attachment anxiety [55].
The present study assessed potential PWS genetic sub-

type differences in brain mechanisms associated with so-
cial (faces) versus nonsocial (objects) stimulus processing
as well as the ability to distinguish emotional valence
(positive vs. negative) of these stimuli as measured by
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ERPs. As previous data suggest that social deficits in PWS
become more pronounced with age [16,56], we focused
on adolescents and adults with PWS. We hypothesized
that individuals with more typical social functioning
would show a larger N170 response to faces than nonso-
cial stimuli, and that larger differences would be observed
in LPP responses to faces with positive versus negative
emotions. We also predicted that if people with the two
genetic subtypes of PWS subtype differed in their atten-
tion to faces versus nonsocial stimuli, such differences
should be evident in the amplitude of P3 responses to
smiling faces serving as attention targets. The P3 response
is not affected by social or emotional content of a stimulus
but reflects conscious detection of a less frequent target
among more frequent distractors (for a review see [57]).
Although exploratory, we also examined subtype differ-
ences in LPP responses to positive and negative nonsocial
stimuli.

Method
Participants
Twenty-four adolescents and young adults with PWS (12
males; mean age = 22.04, standard deviation = 5.60 years)
participated in the study. Thirteen participants had the de-
letion subtype and 11 had the mUPD subtype. Five were
left-handed, the rest were right-handed (mean laterality
quotient = 0.48, standard deviation = 0.65) as determined
by the Edinburgh Handedness Inventory [58]. IQ was
assessed by the Kaufman Brief Intelligence Test-2 [59],
which was individually administered by trained research
assistants. As shown in Table 1, the mean total IQ for the
PWS group was 71.04 (standard deviation = 20.91), and
Table 1 Demographic information for the participant
sample

Deletion mUPD Total

n (male/female) 13 (7/6) 11 (3/8) 24 (10/14)

Age (years) 22.10 (5.23) 21.96 (6.26) 22.04 (5.60)

Handedness (LQ) 0.47 (0.66) 0.48 (0.66) 0.48 (0.65)

K-BIT IQ 63.54 (8.25) 79.91 (27.65) 71.04 (20.91)

Verbal 72.54 (9.13) 83.27 (21.90) 77.46 (16.79)

Matrices 63.46 (12.95) 80.73 (27.69) 71.38 (22.32)

ADOS (new algorithm)

Social Affect total 3.31 (3.12) 5.36 (4.95) 4.25 (4.10)

Restricted and Repetitive
Behavior total

0.92 (1.38) 1.55 (1.75) 1.21 (1.56)

Social Affect Total +
Restricted Repetitive
Behavior total

4.23 (3.79) 6.91 (6.41) 5.46 (5.22)

Severity score 2.69 (2.14) 4.00 (3.63) 3.29 (2.93)

ADOS, Autism Diagnostic Observation Schedule; K-BIT, Kaufman Brief
Intelligence Test [59]; LQ, laterality quotient [58]; mUPD, maternal
uniparental disomy.
although the scores were higher for the mUPD group
(mean = 79.91, standard deviation = 27.65) than the dele-
tion group (mean = 63.54, standard deviation = 8.25), the
difference failed to reach statistical significance (P = 0.08).
All participants had normal or corrected-to-normal vision.
Autism-related symptomatology was assessed using

Module 3 of the Autism Diagnostic Observation Schedule
(ADOS) [60] administered by research-reliable psycholo-
gists. The ADOS was scored using the new algorithm that
yields separate scores for Social Affect and Restricted, Re-
petitive Behaviors as well as a total score representing the
severity of symptoms [61]. Group differences in ADOS
scores failed to reach statistical significance (one-way ana-
lysis of variance (ANOVA) P = 0.217 to 0.341; see Table 1).
Parents or legal guardians provided written informed

consent, and participants with PWS provided written
assent. This study was conducted with approval from
the Institutional Review Board of Vanderbilt University,
in accordance with the Helsinki Declaration of 1975, as
revised in 2000 (World Medical Association Declaration
of Helsinki 2000).

Event-related potential task
Stimuli
Thirty-two color photographs were included of faces
(upright and inverted; from the standardized set by Ekman
and Matsumoto [62]) and nonsocial objects (household
objects, nonprimate animals). One-half of the social and
nonsocial stimuli had positive affective value (for example,
a smiling face, a birthday cake), while the other half were
negative (for example, an angry face, a mean-looking dog).
Each photograph was presented in the center of a com-
puter screen against a black background. From the vie-
wing distance of 90 cm, the stimuli subtended respective
visual angles of 8.91° (h) × 6.68° (w).

Electrodes
A high-density array of 128 Ag/AgCl electrodes embedded
in soft sponges (Geodesic Sensor Net; EGI, Inc., Eugene,
OR, USA) was used to record the ERPs. Electrode imped-
ance levels were at or below 40 kΩ as checked before and
after testing. During data collection, data were sampled at
250 Hz with the filters set to 0.1 and 30 Hz. All electrodes
were referred to vertex and then re-referenced offline du-
ring data analysis to an average reference.

Procedure
The stimuli were presented in an oddball-like paradigm
to ensure participants’ continuous attention to the sti-
muli and their affective content. Photographs from each
stimulus category (faces, inverted faces, objects) and
emotional content (positive, negative) were presented
equally often. Participants were asked to press one but-
ton on a hand-held response box in response to smiling
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faces and another button for all other stimuli (specific
button assignment was counterbalanced across the par-
ticipants). The smiling faces (upright and inverted)
appeared on 48 of 144 trials (33%).
Each trial included a 1,000 ms presentation of the

stimulus image. The response collection window in-
cluded up to 2,000 ms from stimulus onset. The
intertrial interval was marked by a blank black screen
and varied randomly in length between 1,200 and
1,600 ms to prevent habituation and development of
trial-onset expectations. Stimulus presentation was con-
trolled by E-prime (v.2.0; PST, Inc., Pittsburgh, PA,
USA). The entire task included 144 trials (24 trials × 3
stimulus categories × 2 affective values). On average, the
task duration was approximately 10 minutes. A re-
searcher was present in the room to monitor partici-
pants’ behavior. During any periods of inattention or
motor activity, stimulus presentation was suspended
until the participant was ready to continue.

Data analytic plan
Behavioral data
Accuracy and reaction time data were collected for each
stimulus condition and submitted to a repeated-measures
ANOVA with Subtype (2: deletion, mUPD) × Stimulus Ca-
tegory (3: face, inverted face, nonsocial object) × Emotion
(2: positive, negative) factors and Huynh–Feldt correction.

Event-related potential
Individual ERPs were derived by segmenting the ongoing
electroencephalogram to include a 100-ms prestimulus
baseline and an 800-ms post-stimulus interval. Trials
contaminated by ocular or movement artifacts were
rejected from further analysis using an automated
screening algorithm in NetStation (EGI, Inc., Eugene,
OR, USA) followed by a manual review. The automated
screening criteria were set as follows: for the eye chan-
nels, voltage in excess of 140 μV was interpreted as an
eye blink and voltage above 55 μV was considered to re-
flect eye movements. Any electrode with voltage excee-
ding 200 μV was considered bad. Individual electrodes
with poor signal quality were replaced by reconstructing
their data using spherical spline interpolation proce-
dures. If more than 15% of the electrodes within a trial
were deemed bad, the entire trial was discarded. Trial
retention rates were comparable across conditions and
groups (mean deletion = 15.85, standard deviation = 3.70;
mean mUPD = 17.36, standard deviation = 4.75).
Following artifact screening, individual ERPs were ave-

raged and baseline-corrected by subtracting the average
microvolt value across the 100-ms prestimulus interval
from the post-stimulus segment. To reduce the number of
electrodes in the analysis, data from 128 electrodes were
submitted to a spatial principle components analysis
(PCA) using a covariance matrix and Promax rotation, an
objective and replicable statistical approach that identified
a small set of virtual electrodes (see Figure 1), each
representing a spatially contiguous group of electrodes
with similar ERP waveforms (see [63]). Specific electrodes
comprising each cluster were identified using the criterion
of factor loadings ≥|0.6|.
Clustered data were then submitted to a temporal

PCA with Varimax rotation. The temporal PCAs re-
duced 800 ms (200 time samples) of data to a small set
of noncorrelated components accounting for the max-
imum variance. These components corresponded to the
temporal windows of correlated variability in the ERP
waveform. The use of the data-driven objective temporal
PCA approach reduced the risk of experimenter bias in-
fluencing the identification of individual peaks, which is
arguably present when visual analysis is used. The num-
ber of factors to be used in later analyses was chosen
using the Scree Test [64]. Boundaries of individual tem-
poral windows were identified using the criterion of fac-
tor loadings ≥|0.6|.
The resulting values were entered into a repeated-

measures ANOVA with Subtype (2: deletion, mUPD) ×
Stimulus Category (3: face, inverted face, nonsocial
object) × Emotion (2: positive, negative) × Electrode
Cluster (7) factors and Huynh–Feldt correction.

Results
Behavioral performance
By analyzing behavioral performance, a main effect of
Stimulus was found for accuracy measures, F(2,40) =
5.247, P = 0.019, partial η2 = 0.200. Follow-up pairwise
t tests indicated that inverted faces were associated with
lower response accuracy than objects (79% vs. 86%,
t(22) = 2.343, P = 0.007). For the reaction time, there
was an Emotion × Subtype interaction, F(1,21) = 4.228,
P = 0.05, partial η2 = 0.168. Follow-up one-way ANOVAs
indicated a trend toward longer reaction times to nega-
tive stimuli in participants with the mUPD versus dele-
tion subtype (838 ms vs. 706 ms, P = 0.066).

Event-related potential findings
The spatio-temporal PCA identified seven electrode clus-
ters encompassing 105 of 124 electrodes (85%; Figure 1),
and five temporal windows accounting for 83.54% of the
total variance.

Face versus object differences
Analysis of the ERPs in the N170 range (144 to 196 ms)
revealed a Stimulus × Electrode × Subtype interaction,
F(12,252) = 3.133, P = 0.006, partial η2 = 0.130. Follow-up
one-way ANOVA indicated that the two genetic subgroups
differed in their amplitudes of the occipito-temporal N170
in response to faces (F(1, 22) = 3.648, P = 0.042), with



Figure 1 Electrode map, clusters and corresponding peaks of interest used in the analysis. 1, frontal cluster (P3); 2, occipito-temporal
(N170); 3, central (P3); 4, parietal (P3/late positive potential (LPP)); 5, left fronto-temporal (LPP); 6, right parieto-temporal (LPP); 7, right
fronto-temporal (LPP).
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larger amplitudes recorded in the deletion group than the
mUPD group (Figure 2). Further analyses within each
subtype revealed that only participants with the deletion
subtype generated larger occipito-temporal N170 re-
sponses to faces than objects, t(12) = 4.528, P = 0.001, d =
1.26. The N170 response of the deletion group to inverted
faces was smaller than that to faces (t(12) = 3.290, P =
0.006, d = 0.91) and larger than that to objects (t(12) =
2.753, P = 0.018, d = 0.76). No stimulus-related differences
reached significance in the mUPD group (P = 0.63 to 0.86).
Stimulus differences were also present in the later

portion of the waveform (552 to 800 ms) as indicated by
a Stimulus × Electrode interaction, F(12.252) = 3.423,
P = 0.030, partial η2 = 0.140. Follow-up pairwise t tests
demonstrated that face stimuli elicited more positive
amplitudes than inverted faces at occipito-temporal
(t(22) = 4.224, P < 0.001, d = 0.88) and both parietal
(t(22) = 4.176, P < 0.001, d = 0.87) and right parieto-
temporal (t(22) = 3.585, P = 0.002, d = 0.75) scalp locations,
while the reverse direction of differences was observed at
the frontal sites (t(22) = 5.373, P < 0.001, d = 1.12). A similar
pattern of amplitude differences was observed for faces ver-
sus objects (frontal: t(22) = 2.597, P = 0.016, d = 0.53;
occipito-temporal: t(22) = 2.612, P = 0.016, d = 0.53; parietal:
t(22) = 2.366, P = 0.027, d = 0.48; right parieto-temporal:
t(22) = 2.221, P = 0.036, d = 0.45).

Emotional valence discrimination
Emotion-related differences in ERP responses were ob-
served in the 344 to 592 ms window corresponding to the
early LPP response in the form of a Stimulus × Emotion ×
Electrode interaction, F(12,252) = 2.338, P = 0.047, partial
η2 = 0.100. A larger parietal LPP was present in response
to positive than negative objects, t(23) = 2.235, P = 0.035,
d = 0.456 (Figure 3). There were no significant differences
in the amplitudes between positive and negative upright
or inverted faces. At the right parieto-temporal cluster,
inverted faces elicited smaller LPP amplitudes than up-
right faces (positive: t(23) = 2.968, P = 0.007, d = 0.619;
negative: t(23) = 2.435, P = 0.023, d = 0.508) or objects
(positive: t(23) = 2.706, P = 0.013, d = 0.564; negative:
t(23) = 1.989, P = 0.059, d = 0.415). However, there were
no significant differences between positive versus negative
emotional valence for any of the three stimulus categories.
Examination of the anterior LPP response at the left

and right fronto-temporal clusters revealed more positive
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Figure 2 Occipito-temporal N170 response to faces, inverted faces, and objects by genetic subtype. mUPD, maternal uniparental disomy.
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amplitudes in response to positive versus negative objects
on the left (t(23) = 2.044, P = 0.053, d = 0.417), while the
direction of differences was reversed at the right
hemiscalp sites, t(23) = 3.389, P = 0.003, d = 0.692
(Figure 4). Similarly, larger right frontal LPP responses
were observed for negative than positive inverted faces,
t(23) = 2.803, P = 0.010, d = 0.584. No emotion-related
differences reached significance for upright faces.

Smile detection (attention to stimuli)
To evaluate potential differences in attention to the
stimuli, a separate post-hoc analysis of the Stimulus ×
Emotion × Electrode interaction in the 344 to 592 ms
window focused on the combined response to smiling
upright and inverted faces (targets) versus other stimuli
at frontal, central, and parietal electrode clusters. Pair-
wise t-tests with Bonferroni correction indicated that the
expected increase in positivity associated with the tar-
get/oddball stimulus detection was observed only at
frontal and central but not parietal locations (Figure 5).
A direct comparison of amplitudes between the two tar-
get stimulus types indicated larger responses for inverted
than upright smiles (frontal: t(22) = 4.479, P < 0.0001,
d = 0.934; central: t(22) = 4.703, P < 0.0001, d = 0.981).
There was no significant increase in P3 amplitude for
the upright smiling faces compared with other stimuli.

Brain–behavior connections
To explore whether autism symptomatology in PWS is re-
lated to neural responses differentiating faces from objects
or positive from negative emotional content, we correlated
posterior N170, and parietal and fronto-temporal LPP
measures with the ADOS severity score.
Greater severity scores were associated with smaller

(less negative) N170 responses to inverted smiling faces
(r = 0.414, P = 0.050) and larger right parieto-temporal
LPP responses to upright (r = 0.406, P = 0.049) and
inverted (r = 0.445, P = 0.033) negative faces. Higher
ADOS severity scores were also related to larger right
fronto-temporal LPP responses (r = 0.410, P = 0.047) and
smaller left fronto-temporal LPP responses (r = 0.425,
P = 0.039) to upright negative faces.

Discussion
Although people with PWS are at increased risk for aut-
ism symptomatology, especially those with mUPD
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Figure 3 Posterior late positive potential responses to positive and negative stimuli. Posterior late positive potential (LPP) responses to
positive and negative stimuli (combined sample) at parietal (left column) and right parieto-temporal (right column) scalp locations.
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subtype, most prior work in this area has focused on re-
stricted and repetitive behaviors. In contrast, this study
probed social and emotional processing across the two
major genetic subtypes of PWS with methods and stim-
uli previously used to examine social processing in per-
sons with ASD. In doing so, we provide the first direct
evidence of genetic subtypes differences in the social
perception of individuals with PWS.
The experimental design provided an opportunity to as-

sess both basic face perceptual processes (face vs. object,
upright vs. inverted face) as well as attention to the stimuli
(smiling faces vs. all other stimuli) and their emotional
(positive vs. negative) content without placing excessive
cognitive demands on participants. At the behavioral level,
participants with the deletion or mUPD subtypes of PWS
did not differ in their ability to perform the task of detec-
ting smiling faces among negative faces and nonsocial ob-
jects with positive and negative valence, as evidenced in
their similar behavioral accuracy and reaction time. Simi-
larly, Halit and colleagues also found no subtype diffe-
rences in behavioral performance on face processing tasks
[43]. Although the mUPD group in our study did show
slower responses to negative stimuli, this nonsignificant
trend needs further study. All participants were more suc-
cessful in separating faces from nonsocial objects, but less
accurate in identifying smiling faces among other facial
expressions. This pattern of findings suggests that even
though individuals with PWS are similar to typical
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Figure 4 Left and right fronto-temporal late positive potential for the combined sample.
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populations in terms of treating faces as a separate percep-
tual category, they also resemble individuals with ASD in
their difficulty with evaluation of facial expressions.
Although the two groups did not differ on behavioral in-

dices, psychophysiological measures revealed important
genetic subtypes differences in neural processes involved
in the perceptual analyses of social and nonsocial images.
In contrast to those with mUPD subtype, only those with
deletions demonstrated the expected larger posterior
N170 responses to faces than objects. ERPs of individuals
with the deletion subtype thus resembled those elicited by
faces and objects in the typical population, while the lack
of face-object differences in ERPs of participants with the
mUPD subtype is more consistent with findings in ASD.
Individuals with the deletion subtype also differenti-

ated between upright and inverted faces; however, in-
stead of the expected enhancement of the N170 to
inverted faces, that response was reduced, falling be-
tween objects and faces. Similar direction of amplitude
differences for upright versus inverted faces in persons
with the deletion subtype was observed by Halit and col-
leagues [43], but in that study it did not reach signifi-
cance, probably due to a smaller sample size (n = 8 vs.
n = 13 in the present study). Conversely, there were no
orientation-related differences in ERPs to faces in per-
sons with the mUPD subtype. This finding is inconsis-
tent with the results from Halit and colleagues [43] and
could be attributed to sample size differences as well as
to the greater variety of the facial stimuli in the present
study (16 vs. 3 facial identities, inclusion of male as well
as female faces) and the use of faces with emotional ra-
ther than neutral expression.
The absence of face inversion-related enhancement in

our sample of persons with PWS (both the deletion and
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mUPD subtype) is consistent with prior findings repor-
ted in ASD groups [42,65]. These similarities in brain
responses are further strengthened by the observed cor-
relation between ERPs and ADOS severity scores where
larger (that is, more typical) N170 responses to inverted
smiling faces were associated with reduced autism
symptomatology.
Alternatively, genetic subtype differences in N170 res-
ponse could be attributed to the different gender com-
position of these groups. Indeed, the mUPD group was
predominantly female, while the deletion group was
more balanced in gender, but included slightly more
males. However, no gender differences have been repor-
ted in accuracy of face recognition [66], and in our study
there were no differences in accuracy of behavioral re-
sponses to faces between the two subtype groups. Prior
studies of gender differences in N170 responses only
report effects for the topographic distribution of N170,
with females showing more bilateral activation than
males, who elicit right-lateralized N170 [67,68]. Further,
the posterior electrode cluster used for N170 analyses
was selected using objective data-driven procedures that
identified patterns of brain activity common to the en-
tire study sample, which included a comparable number
of males and females. The resulting cluster was nearly
symmetrical in shape and included homologous
occipito-temporal locations from both hemispheres
(with the exception of three additional temporal elec-
trodes in the left hemisphere), and therefore would be
unlikely to bias the outcomes toward a specific gender.
Finally, even if the electrode cluster was biased toward a
specific gender, its bilateral distribution should have in-
creased the likelihood of larger N170 responses being
observed in the predominantly female mUPD group, yet
plotted data and statistical effects indicate the opposite.
We therefore conclude that observed group differences
in N170 response are due to genetic subtype and not the
gender composition of the samples.
In contrast to the N170 responses, no genetic subtype

differences emerged in indices of emotion discrimination.
All participants showed differential brain responses to
positive and negative stimuli in the LPP range. Parietal
LPP differences associated with emotional content were
present for objects only (larger for positive stimuli) and
observed mainly at midline and left-hemisphere scalp lo-
cations, suggesting that participants with both genetic
subtypes of PWS were more sensitive to the arousal level
and emotional content of nonsocial objects than faces. For
the right parieto-temporal cluster, a larger LPP was ob-
served for faces and objects than inverted faces, but no
emotion-related differences were present.
These findings are in line with previous studies

suggesting that posterior LPP responses may reflect the
arousal value of the stimuli rather than the specific emo-
tional valence. LPP amplitudes would thus be larger for
more arousing than neutral stimuli but would not neces-
sarily vary based on positive or negative emotions
[51,53]. Among the three stimulus types, inverted faces
elicited the least amount of arousal in participants, con-
sistent with their low ecological significance. At the
same time, nonsocial objects may be associated with
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greater arousal and more varied emotional response, as
evidenced by the modulation of the parietal LPP. This
pattern of results is consistent with recent reports
suggesting that emotional faces may not be the most
effective stimuli for eliciting affective reactions [53].
Nevertheless, individual differences in right parieto-
temporal LPP responses to negative upright and inverted
faces were related to autism symptomatology in partici-
pants with PWS, where higher ADOS severity scores
were associated with larger LPPs.
In contrast to the parietal LPP, anterior LPP responses

were expected to differentiate between emotional con-
tent, especially because the experimental task required
explicit evaluation of the emotional content [54]. This
expectation was supported by the results of the present
study: participants with PWS demonstrated hemisphere-
specific emotion discrimination. Incidentally, our elec-
trode clusters (identified using a data-drive spatial PCA
approach) overlapped those defined a priori as optimal
for the frontal LPP [54]. For nonsocial objects, larger an-
terior LPP amplitudes were found for negative versus
positive stimuli at right fronto-temporal locations, while
at left fronto-temporal sites the LPP amplitude was en-
hanced for positive versus negative items. Inverted faces
also showed the right-hemisphere bias for negative emo-
tional content, as reflected by increased right fronto-
temporal LPP amplitudes for negative versus positive
expressions. However, processing of the upright faces
remained unaffected by emotional content, despite the
explicit task instructions to attend to that stimulus di-
mension. Yet brain–behavior correlations indicated that
greater autism symptomatology was associated with lar-
ger right anterior and smaller left anterior LPP responses
elicited by the negative upright faces.
The lack of significant differences in neural responses

indicating emotion discrimination in upright faces could
be attributed to insufficient attention to the stimuli. The
relatively high behavioral accuracy of responses to the
smiling faces suggests that participants both understood
and performed the task. However, analyses of the
attention-specific P3 response revealed the expected en-
hanced amplitude to smiling faces (targets) only at
frontal and central sites but not parietal sites. This scalp
distribution of stimulus condition differences corres-
ponds to the anterior P3a, thought to reflect involuntary
orienting to rare stimuli [57]. Smiling faces might thus
have attracted attention due to their overall lower prob-
ability in the stimulus stream. The absence of condition
differences for the parietal P3 response could be attrib-
uted to insufficient task engagement and reduced volun-
tary attention to the stimuli. Furthermore, the anterior
P3a was more pronounced for the inverted than upright
smiling faces. It is possible that inverted faces attracted
more processing resources due to their unusual physical
appearance, and thus their emotional content was also
processed to a greater extent. Conversely, the upright
faces received only minimal attention that did not in-
volve explicit emotion identification.
Although our study generated novel findings that rep-

licate and extend previously reported results, the present
study has several limitations. It is possible that our find-
ings are sample specific because the sample size was
relatively small for each subtype, and the groups were
not matched on gender. The mUPD group also included
individuals with a wider range of intellectual functioning
than the deletion group. While including IQ as a covari-
ate in the statistical analyses did not alter the outcomes
related to group differences in the N170 response to
faces, further studies are needed with larger numbers
that are more homogeneous in intellectual functioning
and gender. An additional possible concern is that the
social and nonsocial stimuli varied greatly in their
arousal value and emotional valence. While the faces
were selected from a standardized set [62], the nonsocial
stimuli were not obtained from a set (for example [69])
and were instead selected based on salient features of
the PWS phenotype. Given their intellectual disabilities,
for example, we selected items that had a simple figure-
ground organization and were appropriate for the partic-
ipants’ developmental level. Given their hyperphagia, we
avoided food stimuli and instead used stimuli with emo-
tional content tailored to the known likes and dislikes of
the study sample (for example, cute vs. menacing ani-
mals). Even so, diverse nonsocial stimulus types have
been used in prior studies of face vs. object processing
(for example, toys, cars, butterflies, and so forth), and
our findings of face–object discrimination in the dele-
tion group but not in the mUPD group argue against the
possibility that our nonsocial stimuli were insufficient in
creating a contrast between N170 responses to faces and
objects. Similarly, emotion-related differences were found
primarily for the nonsocial stimuli, not in standardized
upright emotional faces, suggesting that our nonstan-
dardized stimuli were sufficient to elicit an affective reac-
tion. Finally, we only used a single measure of ASD
features (ADOS severity score) rather than a wider range
of tests targeting social skills. This choice was motivated
by the need to balance reasonable statistical power with
the available sample size. We therefore selected the gold-
standard measure of autism symptomatology. However,
future studies with larger samples are needed to more spe-
cifically delineate the relationship between brain responses
to emotional faces versus objects and social functioning in
persons with various genetic subtypes of PWS.

Conclusions
This study provides the first neural evidence of genetic
subtype differences in the social perceptions of individuals
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with PWS. Those with mUPD, but not deletions, gener-
ated brain responses that resembled those of persons with
ASD in their lack of a face-specific increase in the ampli-
tude of the posterior N170, suggesting potential alter-
ations in social perceptual processes that may contribute
to increased ASD symptomatology in this group. This
finding holds promise for future research that connects
patterns of gene expression in mUPD to functional out-
comes in social perception. Importantly, the two PWS
genetic subtypes do not appear to differ in their process-
ing of emotional content. All participants with PWS dem-
onstrated more extensive processing of emotional valence
in nonsocial than face stimuli, and for the latter they
exhibited a potential bias toward negative social affect. Al-
though further work is needed, these results suggest pos-
sible mechanisms that underlie social difficulties in
persons with PWS, and also offer potential new treatment
targets or outcome measures for future trials aimed at
ameliorating negative mood or social dysfunction.
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