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Developmental maturation of astrocytes and
pathogenesis of neurodevelopmental disorders
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Abstract

Recent studies have implicated potentially significant roles for astrocytes in the pathogenesis of
neurodevelopmental disorders. Astrocytes undergo a dramatic maturation process following early differentiation
from which typical morphology and important functions are acquired. Despite significant progress in understanding
their early differentiation, very little is known about how astrocytes become functionally mature. In addition,
whether functional maturation of astrocytes is disrupted in neurodevelopmental disorders and the consequences of
this disruption remains essentially unknown. In this review, we discuss our perspectives about how astrocyte
developmental maturation is regulated, and how disruption of the astrocyte functional maturation process,
especially alterations in their ability to regulate glutamate homeostasis, may alter synaptic physiology and
contribute to the pathogenesis of neurodevelopmental disorders.
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Neurodevelopmental disorders are a wide range of clinical
conditions that impair growth and development of the
central nervous system (CNS) during early postnatal
stages. In particular, autism spectrum disorder (ASD), a
class of conditions defined by deficits in social behavior
and communication [1], represents a major category of
neurodevelopmental disorders. Although the exact causes
for these disorders remain largely unknown, earlier
genome-wide association studies (GWAS) [2-4] to recent
exosome sequencing [5-8] have associated over 1,000
genes with various forms of neurodevelopmental disorders
[9], including ASD, implicating a strong genetic compo-
nent in their etiology. In particular, genetic mutations of
methyl CpG binding protein 2 (MeCP2) [10] and fragile X
mental retardation 1 (fmr1) [11] genes have been identi-
fied to cause the monogenic neurodevelopmental disor-
ders Rett syndrome and Fragile X syndrome (FXS),
respectively. Interestingly, both Rett syndrome and FXS
significantly resemble typical autistic phenotypes [12,13].
The studies on MeCP2/fragile X mental retardation
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protein (FMRP, protein product of fmr1 gene) function
and how their mutations cause Rett syndrome and FXS
therefore provide valuable clues to the pathogenesis of the
sporadic forms of neurodevelopmental disorders. In
addition to the identification of genetic risk factors, direct
morphometric, neuropathological, and functional neuro-
imaging studies have characterized important pathological
features in autistic brains, such as enlarged brain size
(head circumference), decreased numbers of cerebellar
purkinje neurons, increased inflammatory responses, and
altered brain connectivity and activity (increased suscepti-
bility to seizures) [14,15].
Although pathological features of autistic brains are

mostly neurocentric, it has gradually become evident
from recent studies that (astro)glial cells are likely to be
active components in the pathogenesis of ASD and other
neurodevelopmental disorders [16,17]. Astrocytes are
known to significantly modulate synaptogenesis during
development [18-20] and play diverse and active roles in
synaptic physiology in the adult brain [21,22]. Despite
the essential roles of astrocytes at functional synapses,
how astrocytes are generated and become morphologic-
ally and functionally mature during development re-
mains largely uncharacterized. It also remains unknown
whether astrocyte development becomes impaired in
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neurodevelopmental disorders and how impairment in
astrocyte development may contribute to pathological fea-
tures observed in various neurodevelopmental disorders. In
this review, we will summarize recent progress in under-
standing astrocyte development and their involvement in
neurodevelopmental disorders. Although several recent ex-
cellent reviews have described the involvement of astrocytes
in neurodevelopmental disorders [16,17], we will give our
own perspectives about the morphological and functional
maturation of astrocytes during development, how astrocyte
developmental maturation is regulated, and how the disrup-
tion of the functional maturation process of astrocytes, espe-
cially alterations in their ability to regulate glutamate
homeostasis, may alter synaptic physiology and contribute
to the pathogenesis of neurodevelopmental disorders.

Developmental maturation of astrocytes in the CNS
All of the CNS cell types except the microglia are differ-
entiated from neural stem cells (NSC) at different stages
of embryogenesis. It is well characterized that glial cells,
including astrocytes are generated following neuronal
differentiation from NSC during early embryogenesis.
The peak of astrogliogenesis occurs late prenatal to early
postnatal stages, that is, E18-P7 in various rodent CNS
regions [23,24]. The developmental stages referred in
this review are based on the mouse CNS development
unless otherwise stated. Recent studies have found sev-
eral pathways/mechanisms that are involved in astrocyte
fate specification from NSC, including Janus kinase
(JAK)/Signal Transducer and Activator of Transcription
(STAT) [25], Bone morphogenetic protein (BMP)-SMAD
[26,27], Notch [28], and Nuclear factor IA (NFIA) [29].
These pathways are activated by the extrinsic gliogenesis
signals, including Ciliary neurotrophic factor (CNTF),
Cardiotrophin 1 (CT-1) [30], and Leukemia inhibitory
factor (LIF) [31], which are secreted from early differen-
tiated neurons or late-stage NSCs. These signals also in-
duce intrinsic changes, especially the epigenetic
modifications to open the appropriate chromatin regions
[31], which allows binding of transcriptional factors
(STAT, SMAD, or NFIA) [32] to astroglial gene pro-
moters (such as GFAP, S-100β, and GLAST) to induce
their expression [27,29,33]. Although early in vitro stud-
ies suggest the presence of bipotent glial restricted cells
(GRP) that can generate both oligodendrocytes and as-
trocytes [34], recent in vivo studies have shown that
GRP is likely to be a minor pathway in gliogenesis [35].
The identity of astrocyte progenitor cells in vivo remains
elusive. Interestingly, a recent study has shown that local
proliferation of differentiated astrocytes is the major
source of astroglia in the postnatal cortex [36]. Early
produced astrocytes continue cell divisions while also
undergo differentiation, implicating a progenitor status
of early produced astrocytes [36].
Adult astrocytes, regardless of their anatomical loca-
tion (gray or white matter), typically occupy a large and
non-overlapping domain, which is composed of a large
number of branches and fine processes [37]. In particu-
lar, these fine processes (typically <50 nm in diameter)
are typically distal from the soma and are generally
GFAP immunostaining negative. These fine processes,
also termed ‘peripheral astrocyte processes (PAPs)’ [38],
constitute roughly 50% of the mature astrocyte volume
and 80% of the surface area [39,40], permitting sufficient
insertion of various membrane proteins such as ion
channels, ligand receptors, and transporters. PAPs exten-
sively contact synapses and are considered primary sites
for active astrocyte and neuron signaling [41]. Although
a significant number of astrocytes are largely generated
during the first week postnatally [36,42], these fine pro-
cesses (PAPs) are not induced in these astrocytes until
several weeks later (Figure 1) [31,43]. The astroglial net-
work, indicated by the interacting PAPs, is also formed
at later developmental stages (P14 to P26, Figure 1). In
addition to morphological maturation, several important
astroglial genes, including glutamate transporter GLT1
(rodent analog of human excitatory amino acid trans-
porter 2) [44,45], connexin 43 and 30 [46], and inwardly
rectifying potassium channel Kir4.1 [47,48], are also in-
duced in astrocytes within 3 to 4 weeks after birth,
suggesting that astrocytes also undergo dramatic mo-
lecular changes during developmental maturation. Inter-
estingly, these astroglial genes represent some of most
characteristic and important functions of astrocytes in
the CNS. For example, GLT1 is the physiologically dom-
inant glutamate transporter in the CNS to clear extracel-
lular glutamate; connexin 43 and 30 are the major
components of the astrocyte gap-junction which forms
the astrocyte network; Kir4.1 is an important potassium
channel in astrocytes that is critical for maintaining the
K+ gradient for proper glutamate uptake and also signifi-
cantly buffers activity-induced K+ release. Induction of
these genes during development, together with the
growth of PAPs in astrocytes, suggests that astrocytes
undergo a developmental maturation phase from the
first week to the following 2 to 3 weeks postnatally to
acquire their unique morphology and molecular func-
tion. Notably, this is a developmental stage that follows
the early astrocyte fate specification and differentiation.
Moreover, the molecular maturation is tightly associated
with the morphological maturation of astrocytes, as these
important proteins mentioned above are all membrane
proteins that are primarily localized on the surface of the
fine processes for their proper functions in astrocytes.
Despite the dramatic changes astrocytes undergo during

the maturation phase, the mechanisms for astrocyte devel-
opmental maturation remain largely unknown. Neuronal
signaling has been implicated in early astrocyte fate
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Figure 1 Morphological maturation of astrocytes during postnatal development. (A) Growth of cortical astrocyte processes illustrated with
tdTomato reporter on EAAT2 tdTomato transgenic mice during postnatal development; Scale bar: 100 μm; (B) A magnified view of typical
astrocyte morphology at P4 and P30 from cortex of EAAT2 tdTomato mice. Scale bar: 50 μm.

Yang et al. Journal of Neurodevelopmental Disorders 2013, 5:22 Page 3 of 8
http://www.jneurodevdisorders.com/content/5/1/22
specification by secreting the extrinsic signals like CT-1
[30] from early-differentiated neurons to induce astrocyte
differentiation. Interestingly, although GLT1 is the pre-
dominant glutamate transporter in adult brain, cultured
astrocytes express minimal levels of GLT1 [49]. Instead,
GLAST (rodent analog of human excitatory amino acid
transporter 1, EAAT1) is the dominant glutamate trans-
porter in cultured astrocytes [50]. However, when astro-
cytes are co-cultured with neurons, GLT1 expression in
astrocytes is highly induced in a dose-dependent manner
(Figure 2) [51,52]. Similarly, expression of connexin 43/30
is also induced in astrocytes when co-cultured with neu-
rons [53,54]. As cultured astrocytes share a more similar
gene profile with immature astrocytes in vivo (P1-P7) [55],
neuron-dependent induction of these astroglial genes in
cultured astrocytes indicates that neuronal signaling is
likely to play important roles in induction of astrocyte
gene expression during development in vivo. Recent gene
expression profile studies in astrocytes that are acutely iso-
lated from the brain have revealed that developing astro-
cytes express many neurotransmitter receptors [55,56],
allowing them to receive neuronal signals. Indeed, a sub-
stantial body of literature has reported that neuronal activ-
ity triggers Ca2+ changes in astrocytes in vitro and in vivo
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Figure 2 Expression of GLT1 in cultured astrocytes is induced
by co-cultured neurons in a dose-dependent manner.
[57,58], though the specific metabotropic glutamate recep-
tor that mediates this response varies significantly between
immature (GRM5) and mature astrocytes (GRM3) [59]. In
addition, although it is unclear whether neuronal activity
modulates PAPs formation in astrocytes during develop-
mental maturation, direct application of glutamate induces
rapid filopodia motility in cultured astrocytes [60]. Neur-
onal activity has also been closely associated with struc-
tural plasticity of adult astrocytes in vivo [61]. Both
secreted neuronal signals, such as activity-dependent neu-
rotransmitters and small protein CT-1 and contact-
dependent signaling, such as Notch-JAG1 interaction [62],
can play important roles in astrocyte developmental matur-
ation. Molecular mechanisms for astrocyte maturation,
especially downstream pathways that mediate potential
neuronal signaling are essentially unknown. As various
pathways/mechanisms involved in early astrocyte specifica-
tion are characterized (described above), it would be inter-
esting to test whether any of these pathways also regulate
developmental maturation of astrocytes at a later stage.

Roles of astrocytes in neurodevelopmental disorders
The first evidence of potential astrocyte abnormalities in
neurodevelopmental disorders was from biochemical
analysis of patient brain samples and screening of gen-
etic risk factors for various forms of neurodevelopmental
disorders. Astrogliosis, indicated by increased GFAP ex-
pression, was found in the cerebellar cortex of autistic
brains [63], though neuronal degeneration was not gen-
erally observed in brains of neurodevelopmental disorder
patients. Expression changes of a few other astroglial
proteins were also observed in brain samples of ASD pa-
tients. For example, increased EAAT2 and EAAT1 ex-
pression was found in cerebellum of autistic patients
[64]. Significantly increased connexin 43 was found in
the superior frontal cortex, while decreased aquaporin 4
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was found in the cerebellum of autistic brains [65].
These astroglial changes in autistic brains imply that as-
trocytes are likely to be involved in neurodevelopmental
disorders. In addition, genetic studies have found associ-
ations between specific nucleotide polymorphisms in the
EAAT1 sequence with severity of repetitive behaviors
and anxiety in ASD children [66]. Mutations of Kir4.1
were also found in a subset of autism patients [67],
which likely affects the K+ homeostasis in the brain and
increases the seizure susceptibility in autism patients.
Despite these clinical studies, it is important to note that
specific astrocyte-related mechanisms involved in the
pathogenesis of neurodevelopmental disorders remain to
be characterized.
Significant progress in understanding the roles of as-

trocytes in neurodevelopmental disorders has recently
been made from animal (mouse) models of two typical
monogenic neurodevelopmental disorders: Rett syn-
drome and FXS. Loss-of-function mutations in MeCP2
are the primary cause for the vast majority of Rett syn-
drome patients [10]. The fragile X syndrome is caused
by the transcriptional silencing of FMRP expression, as a
result of hypermethylation on the abnormally high num-
ber (>200) of trinucleotide CCG insertions at the fmr1
gene locus [11]. Both MeCP2−/− [68,69] and fmr1−/− [70]
mice were later developed that recapitulate typical clin-
ical symptoms of Rett syndrome or FXS, respectively.
Extensive studies have been carried out in these mouse
models to understand the functions of MeCP2 and
FMRP in brain and how their loss-of-function mutations
alter dendrite morphology and synaptic physiology,
which underlies the clinical phenotypes of Rett syn-
drome and FXS [71,72]. Using these mouse models, re-
cent studies have started to unveil the pathogenic roles
of astrocytes in neurodevelopmental disorders. Astro-
cytes derived from MeCP2−/− mice can significantly
affect normal neuronal development [73]. Wild-type hip-
pocampal neurons co-cultured with MeCP2-deficient
astrocytes or treated with astrocyte conditioned me-
dium (ACM) collected from MeCP2-deficient astrocytes
exhibit abnormally stunted dendrites [73]. Similarly,
astrocytes derived from fmr1−/−− mice also induce devel-
opmental delays in dendrite maturation and synaptic
protein expression of hippocampal neuronal dendrites in
co-cultures [74,75]. Excessive neurotrophin-3 (NT-3),
but not other growth factors secreted from fmr1−/− as-
trocytes, was later suggested to reduce the dendrites of
neurons and synaptic protein levels in FXS condition
[76]. In addition, loss of MeCP2 in astrocytes appears to
be dependent upon the astroglial gap-junction [77] and
it induces expression changes of several important
astroglial genes [78]. Most interestingly, selective restor-
ation of MeCP2 in astrocytes in vivo using the Cre-loxP
recombination system significantly improves locomotion
and anxiety levels, and restores respiratory abnormalities
to a normal pattern [79]. At the cellular level, re-
expressed MeCP2 in astrocytes also restores normal
dendritic morphology and increases levels of the vesicu-
lar glutamate transporter VGLUT1 [79]. These results
clearly suggest that astrocytes play important pathogenic
roles in Rett syndrome and they should also be consid-
ered as important therapeutic targets, in addition to
neurons [16].
Glutamate homeostasis is essential for brain physi-

ology. Proper glutamatergic signaling is important in
regulating neurite outgrowth, synaptogenesis, neuronal
migration, differentiation, and cell death in the develop-
ing brain [80-82]. Given its important and diverse func-
tions in development, it is not surprising that altered
glutamatergic signaling may significantly contribute
to the pathogenesis of neurodevelopmental disorders.
Indeed, several genetic studies have associated variations
of glutamate receptor genes (GluR6, GRM8, and
GRIN2A) with ASD [83-85]. In addition, studies using
fmr1−/− mice have characterized the abnormally increased
group I mGluR (especially mGluR5) activation-induced
protein synthesis [72,86], which underlies several typical
abnormalities observed in FXS, such as enhanced mGluR-
dependent long-term depression (LTD) [87], induction
of elongated/immature dendrites [88], and increased
susceptibility to audiogenic seizure [89], and so on. Al-
though FMRP is generally considered a translation sup-
pressor and increased mGluR1/5-dependent dendritic
protein synthesis is largely due to the loss of FMRP in
neurons in FXS [86], the observation that genetic or
pharmacological inhibition of mGluR5 activation ef-
fectively and significantly reduces mGluR1/5-dependent
dendritic protein synthesis in fmr1−/− mice [90,91] also
implicates that mGluR1/5 activation is abnormally en-
hanced in FXS. In addition, inhibition of mGluR5 sig-
naling also significantly suppresses repetitive behaviors
and social behavior deficits and reverses elevated stereo-
typical and anxiety-like behaviors in mouse models of
idiopathic autism [92], suggesting that abnormally en-
hanced mGluR5 activation may also contribute to some
forms of idiopathic autism. In the mammalian CNS,
neuronal mGluR1/5 is preferentially localized on the
peri-synaptic surface membrane, thus its activation is
highly dependent upon the glutamate that is spilled out
from the synaptic cleft [93]. Interestingly, the extrace-
llular, especially the spilled glutamate levels are tightly
regulated by astroglial glutamate transporters GLT1/
GLAST (human EAAT2/EAAT1) [94]; therefore the ac-
tivation of neuronal mGluR1/5 is actively modulated by
astroglial GLT1/GLAST expression/activity. Indeed, phar-
macological inhibition or genetic deletion of GLT1/GLAST
activity potentiates postsynaptic neuronal mGluR acti-
vation [95], while upregulation of GLT1 expression se-
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verely impairs mGluR-dependent LTD at rat mossy
fiber-CA3 synapses [96].
We have recently found a downregulation of GLT1/

GLAST expression and reduced glutamate uptake in
cortex of fmr1−/− mice during postnatal development
and have shown that their downregulation contributes to
the enhanced neuronal excitability observed in fmr1−/−

mouse cortex [97]. These results suggest that the dys-
regulated GLT1/GLAST expression is likely to be an
upstream, astrocyte-mediated mechanism leading to en-
hanced neuronal mGluR5 activation in FXS. As a result,
enhanced neuronal mGluR5 activation may synergistically
increase abnormal dendritic protein synthesis, together
with the loss of FMRP-mediated suppression on protein
synthesis in fmr1−/− neurons (Figure 3). It also explains
the earlier observations that the basal levels of protein
synthesis are elevated in fmr1−/− mice [86]. In addition,
proper expression of GLT1 and GLAST is known to be es-
sential for the normal development of the CNS [81] and
GLT1−/− mice exhibit severe seizures as early as P14 [98].
Moreover, 30% of GLT1+/− GLAST+/− (double heteroge-
neous) mice with 50% of GLT1 and GLAST expression
levels (and 30% increased extracellular glutamate levels
[99]) exhibit behavioral and neuroanatomical abnormal-
ities often observed in autism, including abnormal social
interaction, seizures, and an enlarged amygdala and hippo-
campus [100]. As astroglial glutamate transporters, espe-
cially GLT1, are strongly induced during the functional
maturation process, potential dysregulation of GLT1/
GLAST during development exemplifies how alterations
in the functional maturation of astrocytes could contribute
to the pathogenesis of FXS and other neurodevelopmental
disorders.
Astrocytes perform many other important functions in

mammalian CNS, in addition to the clearance of extra-
cellular glutamate. Developing but not mature astrocytes
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Figure 3 Dysregulation of astroglial glutamate transporters is likely t
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secrete thrombospondins 1 and 2 (TSP-1 and TSP-2),
which significantly and specifically increases numbers of
excitatory synapses [101]. Glypican 4 (Gpc4) and glypican
6 (Gpc6) were further identified from astrocyte condi-
tioned medium to promote glutamate receptor clustering
and receptivity, which facilitates the formation of postsyn-
aptically functioning CNS synapses [18]. Additional
synaptogenic molecules secreted from astrocytes are being
characterized [102]. Although immature dendrite morph-
ology and altered synaptic functions are hallmarks in
many neurodevelopmental disorders, whether these devel-
oping astrocyte-dependent synaptogenic pathways are al-
tered and their consequences in neurodevelopmental
disorders remain to be examined. In addition, we have
very limited knowledge about the molecular changes of as-
trocytes in neurodevelopmental disorders, especially from
in vivo settings. Examination of molecular changes in as-
trocytes in vivo has been traditionally difficult; however,
recent development of an array of astrocyte reporter mice
(BAC GLT1 eGFP [103], BAC ALDH1L1 eGFP [55],
EAAT2 tdTomato [104]) has allowed rapid isolation of
in vivo astrocytes from mouse models of neuro-
developmental disorders through fluorescence activated
cell sorting (FACS) and subsequent genome-wide tran-
scriptional profiling. The development of translational
ribosome affinity purification (TRAP) technique and
ALDH1L1-TRAP mice also provides another convenient
in vivo approach to isolate translating mRNAs from astro-
cytes in an unprecedented temporal and spatial manner
[105,106]. These tools will greatly facilitate the molecular
characterization of potential developmental abnormalities
of astrocytes in various neurodevelopmental disorders. Re-
sults from these studies will provide valuable clues about
the pathways that regulate functional maturation of astro-
cytes during development and their molecular alterations
in neurodevelopmental disorders.
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Conclusions
In summary, we discuss the functional maturation of
astrocyte during postnatal development, and the disrup-
tion of this maturation process, like the dysregulation of
glutamate transporters may serve as an astrocyte-
dependent mechanism for the pathogenesis of FXS and
other neurodevelopmental disorders. Although the mo-
lecular mechanisms of astroglial maturation and how
the disruption of this maturation process contributes to
the pathogenesis of neurodevelopmental disorders re-
main to be investigated, we expect that the availability of
novel in vivo tools for astrocyte study will greatly help
answer these questions. Ultimately, a better understand-
ing of the roles of (astro)glia in the pathogenesis of
neurodevelopmental disorders will facilitate the search
for cures for these disorders.
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