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biomarker in Angelman syndrome: a
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Abstract

Background: Clinicians have qualitatively described rhythmic delta activity as a prominent EEG abnormality in
individuals with Angelman syndrome, but this phenotype has yet to be rigorously quantified in the clinical
population or validated in a preclinical model. Here, we sought to quantitatively measure delta rhythmicity and
evaluate its fidelity as a biomarker.

Methods: We quantified delta oscillations in mouse and human using parallel spectral analysis methods and
measured regional, state-specific, and developmental changes in delta rhythms in a patient population.

Results: Delta power was broadly increased and more dynamic in both the Angelman syndrome mouse model,
relative to wild-type littermates, and in children with Angelman syndrome, relative to age-matched neurotypical
controls. Enhanced delta oscillations in children with Angelman syndrome were present during wakefulness and
sleep, were generalized across the neocortex, and were more pronounced at earlier ages.

Conclusions: Delta rhythmicity phenotypes can serve as reliable biomarkers for Angelman syndrome in both
preclinical and clinical settings.
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Background
Angelman syndrome (AS) is a neurodevelopmental disorder
characterized by developmental delay, impaired speech and
motor skills, and high comorbidity with epilepsy [1]. Loss-
of-function mutations in the maternal copy of the imprinted
UBE3A gene cause AS [2, 3], while maternal duplications in
the same region (15q11-13) are linked to autism [4–6]. Re-
cent work has identified multiple approaches with preclin-
ical therapeutic potential for AS: antisense oligonucleotides
and topoisomerase inhibitors have the potential to unsilence
paternal UBE3A and re-express UBE3A protein; gene
therapy provides a direct method of expressing UBE3A;
mechanism-based approaches downstream of UBE3A in-
clude GABAA agonists (THIP/gaboxadol) and modulation

of αCaMKII; other approaches include altering diet [7–12].
Many of these approaches are in the pipeline for upcoming
clinical trials. It is therefore critically important to develop
biomarkers for AS that are clinically relevant, objectively
quantifiable, highly penetrant, and have strong face validity
between animal models and patient populations. Such bio-
markers need not have predictive or diagnostic value, as AS
diagnoses are confirmed genetically [13], but rather their
value would lie primarily in their use as outcome measures.
Electroencephalography (EEG) has revealed consistent

signatures of AS, which have been described by clinical re-
ports and case studies spanning nearly 30 years [14–22].
EEG abnormalities in AS include rhythmic delta, rhythmic
theta, and epileptiform spike-wave discharges. Increased
delta rhythmicity is the most common EEG phenotype in
AS (~84% of patients) [21], and of these phenotypes, it is
the most specific for AS relative to other syndromes [20].
Multiple variants of delta activity have been described based
on brain region and waveform characteristics [20], yet every
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variant of delta, by definition, has a common oscillation fre-
quency of ~2–4 cycles per second. Clinical studies typically
report delta abnormalities in a binary fashion, being present
or absent, but in some cases have further subdivided delta
abnormalities into being continuous or intermittent [17].
To date, no study has quantified delta rhythmicity in AS,
quantitatively compared AS individuals to a neurotypical
control group, or quantitatively tracked developmental and
state-dependent (sleep/wake) changes in delta oscillations
in AS. Principled characterization of these features, and
validation in a mouse model, are critical for development of
delta rhythms as a biomarker.
AS model mice (Ube3am−/p+) have genetic construct val-

idity with the human condition and thus provide a powerful
preclinical model. Silencing of the paternal Ube3a allele is
conserved from humans to mice; thus Ube3am−/p+ mice,
like individuals with AS, have minimal functional UBE3A
protein [23]. Using parallel quantitative methods, we ana-
lyzed delta rhythmicity in AS model mice and human EEG
data. We found that increased delta power provides a robust
and reliable biomarker with strong face validity between the
AS mouse model and a patient population, 4–11 years old.
Additionally, quantitative methods allowed for a novel study
of delta “dynamics,” a measure of how delta rhythms vary
over time across a single recording session. Delta activity is
more dynamic, both in AS mice and AS individuals.
Children with AS exhibited enhanced delta activity across
all EEG electrode placements. The enhanced delta power
and dynamics were present during both wakefulness and
sleep and were observed at all ages tested but most pro-
nounced in younger children. Overall, this study corrobo-
rates qualitative clinical descriptions of delta oscillations in
AS individuals [14–22], provides the first quantitative
assessment of delta rhythmicity in AS individuals and com-
parison with a neurotypical reference group, and validates
this biomarker in a mouse model. Delta rhythmicity thus
has promise as a preclinical and clinical biomarker for AS
and as an outcome measure for AS clinical trials.

Methods
Study design
Our prespecified goal was to quantify delta power in AS: first
in a mouse model, then in a patient population. We refined
analysis methods during mouse studies and used these
parameters for subsequent human EEG data analysis. We
allowed for the possibility that mouse studies would shift
our area of interest to other frequencies (e.g., theta) that have
also been reported as abnormal in AS [14, 17, 20, 21, 24];
however, because mouse studies confirmed delta abnormal-
ities with largely normal power in other frequency bands, we
entered human studies with the original prespecified hypoth-
esis that delta power is increased. We became interested in
a secondary experimental question—the dynamics of delta
abnormalities in AS—during mouse studies. Therefore,

based on our mouse work (Figs. 1 and 2, Additional files 1:
Figure S1 and 2: Figure S2) and clinical reports [14–22], we
began human EEG studies with a clear hypothesis: delta
power and dynamics are quantitatively increased in chil-
dren with AS. We thus avoided problems with circularity
and data selection that may arise when a study “fishes” for
a phenotype with no predefined hypothesis [25].
Mouse studies were conducted on AS model mice

(Ube3am−/p+) and wild-type littermate controls, with exper-
imenters blind to genotype. Human studies were retro-
spective analyses of AS and neurotypical EEG data. Human
subjects were children with a genetic diagnosis of AS who
had EEGs between 2006 and 2014 at the San Diego site
(Rady Children’s Hospital San Diego: RCHSD) of the
AS Natural History Study (ClinicalTrials.gov identifier:
NCT00296764), and an age- and sex-matched sample of
neurotypical controls who had EEGs at Massachusetts

Fig. 1 Delta power is increased in AS model mice. a LFP recording
configuration from the primary visual cortex in awake mice. b
Representative examples show increased delta rhythmicity in AS model
mice. c, d Power spectra of group data (WT: n= 23, AS: n= 24; shading
indicates ±sem; d is plotted on log scale). e Enhanced delta power
(2–4 Hz) in AS mice (*p= 0.012, Student’s t test). f Theta (5–10 Hz), (g)
beta (13–30 Hz), (h) gamma (30–50 Hz), and (i) total (1–50 Hz) power
were not different between groups (theta: p= 0.858, beta: p= .509,
gamma: p= 0.304, total: p= 0.075). j Enhanced relative delta power in AS
mice (**p= 0.008)
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General Hospital (MGH) between February 1, 2012, and
May 1, 2012. For neurotypical EEGs, clinical chart review
was performed and only those children with documented
normal neurodevelopment and events leading to diagnostic
EEG evaluation that were subsequently determined to be
nonepileptic were included for analysis. We analyzed EEGs
from children aged 4–11 (48–132 months), as this period is
relatively stable compared to earlier ages [26] and is a likely
age range for clinical trials. For cross-sectional studies
(Figs. 3, 4, and 5a, b, e, f, Additional file 3: Figure S3), we
analyzed one EEG session per subject. We followed up with

longitudinal studies in a subset of children where multiple
EEG sessions were available (Fig. 5c, d). In the longitudinal
group, we analyzed two EEGs outside of our initial age
parameters, both from children aged 11–12.
Because delta rhythms are a feature of slow-wave sleep and

AS individuals have abnormal sleep patterns [1, 27], sleep
during EEG sessions was a potential confounding variable.
Therefore, an experienced clinical neurophysiologist manually
categorized wake and non-REM sleep epochs using standard
criteria [28]. We made AS versus neurotypical comparisons
separately for periods of sleep and periods of wakefulness.

Fig. 2 Delta rhythms are more dynamic in AS model mice. a, b Top: spectrograms show rhythmicity across time in single LFP sessions in representative
WT and AS mice on a 129 background. Bottom: delta power is extracted from the spectrogram during each 2-s time bin for representative examples. c
Distributions of delta power across a single session for representative examples used in a and b. d Group analyses reveal differences in delta distributions
in both 129 and C57 strains (129: *p= 0.0005, C57: *p= 0.0198, K-S tests). Inset 1 spans (in μV2 × 103) 0–1 on the x-axis; inset 2 spans 2–8. e Quantification of
within-session delta dynamics. Box plots indicate representative examples used in a and b. Interquartile range (IQR) measures the spread of the middle 50%
of delta measurements within a session. Dots represent suprathreshold bins where delta >Q3+ 1.5*IQR. Group analyses reveal increased IQR in AS model
mice on both 129 and C57 backgrounds (129: **p= 0.0093, C57: *p= 0.010). f Calculating IQR based on relative delta power within each 2-s bin reveals AS
model mice on both 129 and C57 backgrounds have increased within-session delta dynamics (129: ***p= 0.0008, C57: *p= 0.021). g There are fewer
suprathreshold delta bouts in 129 AS model mice (**p= 0.007) but not C57 AS model mice (p= 0.74) compared to WT littermates
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Our mouse sample size was determined a priori. Our
retrospective human EEG sample sizes (wake and sleep)
were determined by availability of de-identified data. All
data exclusion criteria were defined prospectively for both
mouse and human studies. For mouse studies, individual
sessions were excluded (blind to genotype) only in rare
cases where a headcap detached during a recording session
or where movement artifacts were continuous and perva-
sive. Outliers in which total raw power (1–50 Hz) exceeded
2 SD from the group mean were excluded (number of
outliers per group—129/WT, 2/25; 129/AS, 0/24; C57/WT,
1/31; C57/AS, 1/40). For human studies, individual elec-
trodes were excluded in cases of excessive noise or poor
connections. EEG recordings with less than 100 s of sleep
or wake were excluded [29].

Mouse LFP methods
Animals
All mouse protocols were approved by the Institutional
Animal Care and Use Committee of the University of North

Carolina at Chapel Hill. Mice were group-housed on a 12:12
light/dark cycle with ad libitum access to food and water.
Male and female mice were used for experiments in equal
genotypic ratios. Female Ube3am+/p− × male Ube3am+/p+

breeders generated littermate experimental Ube3am−/p+

(AS) and Ube3am+/p+ wild-type (WT) mice. We maintained
separate 129 and C57BL/6 colonies, each congenic for 10+
generations. Ype Elgersma (Erasmus Medical Center)
provided the 129 mice, and Jackson Labs (Bar Harbor, ME)
provided the C57BL/6 mice (JAX #: 016590).

Surgeries and LFP recordings
Surgery and local field potential (LFP) recordings were
conducted as previously described [30], with only minor
modifications. We anesthetized adult mice and im-
planted tungsten microelectrodes (FHC) bilaterally in
layer 4 of the primary visual cortex (coordinates relative
to lambda, in mm, 0 A/P, +3.2–3.3 M/L, −0.47 D/V).
We implanted a silver ground wire in the cerebellum
and head-fixed mice using a steel headpost attached to

Fig. 3 Delta rhythmicity is increased in children with Angelman syndrome relative to neurotypical controls during wakefulness. Black:
neurotypical, red: AS. a Schematic showing EEG electrode placement according to the 10-20 recording system. Delta power and dynamics are cal-
culated for each electrode and results averaged by region. Representative EEGs from b a neurotypical child and c a child with AS illustrate en-
hanced delta power, generalized across recording sites. d, e Power spectra of group data from occipital electrodes (NT: n= 54, AS: n= 26; shading
indicates ±sem) illustrate an increase in delta power in AS; other regional spectra are shown in Additional file 3: Figure S3. f Group analyses reveal increased
delta power generalizes across the neocortex (***p< 0.0001, Student’s t test). g Delta dynamics (IQR) are also increased in all regions (***p< 0.0001)
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the skull anterior to the bregma. Electrodes and head-
posts were held in place by headcaps made from
dental cement (Metabond). Following surgeries, mice
recovered for at least 2 days prior to 2 days of ha-
bituation (15 min) to the recording apparatus. We
then recorded LFP continuously for 15 min on three
consecutive days following habituation. Mice were
head-fixed during all recordings and viewed a static
gray screen in an otherwise dark, quiet environment.
We amplified data 1000× using single-channel ampli-
fiers (Grass Technologies), digitized data using a Micro
1401 digitizer (CED), and acquired data at 4 kHz using
Spike2 software (CED). We applied analog 0.1-Hz
high-pass and 100-Hz low-pass filtration during data
acquisition and digital 1-Hz high-pass filtration (second-
order Butterworth) after data acquisition. The roll-off
of the high-pass Butterworth filter did not impinge
onto the delta range of interest (2–4 Hz). Ages of
mice on the first day of LFP recording ranged from
P85 to P114 and averaged 94.0 ± 1.2 days (129) and
100.0 ± 0.8 days (C57).

LFP analysis
Sample size (“n”) represents the number of mice. For
each mouse, we averaged processed data from the left
and right hemispheres within a session, then averaged
results across three sessions. For sessions with move-
ment artifacts, we selected the longest continuous
period with no artifacts present for analysis. We ana-
lyzed spectral power using a fast Fourier transform
(FFT) of the continuous signal, resulting in frequency
bins of 0.5 Hz. We determined relative power by ex-
pressing power in a given frequency band as a per-
centage of the total power between 1 and 50 Hz. A
disadvantage of using relative power is that by defin-
ition, total power must summate to 100%, so a geno-
type difference in one frequency band (e.g., delta)
may also manifest as relative genotype differences in
other frequency bands (see “Results”). Thus, it is difficult
to appropriately assess differences in relative power in fre-
quency bands other than delta (Additional file 2: Figure
S2). We defined delta as 2–4 Hz, theta as 5–10 Hz, beta
as 13–30 Hz, and gamma as 30–50 Hz.

Fig. 4 Delta rhythmicity is increased in children with Angelman syndrome relative to neurotypical controls during sleep. Black: neurotypical (NT),
red: AS. a Occipital power spectra comparing wakefulness and sleep in neurotypical and AS children. Wake data are re-plotted from Fig. 3d; sleep
data are re-plotted in d. Representative sleep EEGs from b a neurotypical child and c a child with Angelman syndrome illustrate delta oscillations
in AS. d, e Occipital power spectra during sleep (NT: n = 54, AS: n = 13; shading indicates ±sem) show an increase in delta power in AS. f Group
analyses reveal increased delta power generalizes across the neocortex (***p < 0.0001, Student’s t tests). g Delta dynamics (IQR) are also increased
in all regions (***p < 0.0001)
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For each LFP electrode, we assessed delta dynamics
(Fig. 2) by quantifying the spread of delta power in all 2-s
bins with a 1-s overlap. We generated box plots of raw and
relative delta power using 2-s bins for the duration of each
recording and quantified three parameters: mean, inter-
quartile range (IQR), and outliers, defined as Q1 − 1.5*IQR
or Q3 + 1.5*IQR. Mean delta power calculated by averaging

bins was statistically indistinguishable from delta power
calculated by FFT on the entire signal (mean of bins—WT,
20.0 ± 2.2%; AS, 29.0 ± 2.4%; FFT of the entire signal—WT,
20.3 ± 2.0%; AS, 28.9 ± 2.3%, represented in Fig. 1j). IQR
represents the spread between the middle 50% of delta
measurements, and we used this as a readout of within-
session delta dynamics. Suprathreshold outliers represent

Fig. 5 Delta phenotypes are stronger at earlier ages in children with Angelman syndrome. a Increased occipital delta power in children with AS
is age-dependent during wakefulness (NT: n = 54, AS: n = 26). b Occipital delta dynamics as a function of age in neurotypical and AS children.
Longitudinal studies in a subset of AS patients show that c delta power and d delta dynamics decrease as a function of age (n = 12 children,
n = 31 sessions). e Delta power during sleep (NT: n = 54, AS: n = 13) and f delta dynamics during sleep do not show statistical age dependence. g,
h Analysis of grouped cross-sectional and longitudinal occipital delta power and dynamics during wakefulness and sleep. g Delta power during
wakefulness was increased in AS at ages 4–6, 6–8, and 8+ (two-way ANOVA and post hoc Bonferroni: ***p < 0.0001, **p = 0.0002). Delta dynamics
(IQR) during wakefulness were increased in AS at ages 4–6, 6–8, and 8+ (***p < 0.0001, **p = 0.0007). Sample sizes are represented in bars. h Delta
power and dynamics during sleep were increased in AS at ages 4–6 and 6–8 (***p < 0.0001)
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bouts of “strong delta.” We wrote custom MATLAB
scripts to analyze delta dynamics and used Spike2 software
for basic spectral analyses.

Human EEG methods
Data sources
All EEG studies and analyses were performed with
institutional review board (IRB) approval. We analyzed EEGs
from 28 children with AS (14 males, 14 females) and 72
neurotypical controls (42 males, 30 females). During EEGs,
26/28 AS individuals had periods of wake and 13/28 had
periods of sleep. During EEGs, 54/72 neurotypical individuals
had periods of wake and 54/72 had periods of sleep. These
samples (Table 1) represent the cross-sectional data analyzed
in Fig. 3 (wake), Fig. 4 (sleep), Additional file 3: Figure S3,
and Fig. 5a, b, e, f. For longitudinal studies, we analyzed
repeat EEGs from 12 AS individuals, resulting in a total of 45
wake EEG sessions and 15 sleep EEG sessions (Fig. 5c, d).

Data acquisition, processing, and analysis
Both neurotypical EEGs (MGH) and AS EEGs (RCHSD)
were performed using the standard clinical method. All
data were recorded using the standard 10-20 EEG system
using a common physical reference on either Bio-Logic or
Xltek systems. The location of the physical reference varied
between sites; therefore, we re-referenced all data to linked
ears ((A1 +A2) / 2). Neurotypical EEGs were recorded at
200, 250, 500, or 512 Hz, and AS EEGs were recorded with
a sampling rate of 256 or 512 Hz.
We processed all raw data from both sites using the

same pipeline, which included re-referencing to linked ear
reference, filtering, manual inspection by a board-certified
neurophysiologist (CJC, GMD), sleep/wake coding, artifact
removal, and analysis. After re-referencing, data were
broken into sleep (NREM) and wake epochs by an experi-
enced clinical neurophysiologist (CJC, GMD, MD). Periods
in which wake/sleep state was unclear were excluded, and
periods of REM sleep were also excluded. Next, data were
digitally filtered (second-order Butterworth): 1-Hz high-
pass, 100-Hz low-pass, and 60-Hz notch. Movement arti-
facts were manually marked and excluded. We used
EEGLAB [31] as a viewer to assess sleep state and identify
artifacts. Observers were not blind to genotype during
EEG inspection, sleep/wake coding, and artifact removal.
After processing, we used custom MATLAB scripts to

analyze all data. Neurotypical and AS EEGs were batch-
processed using the same programs at the same time. We
slightly modified scripts from mouse LFP analysis for hu-
man EEG analysis. For each of 19 recording electrodes, we
generated power spectra and calculated delta power and
delta dynamics. We group-averaged results from neighbor-
ing electrodes to assess delta phenotypes by region (Fig. 3a):
occipital (O1, O2), temporal (T3, T4, T5, T6), parietal (P3,
Pz, P4), central (C3, Cz, C4), and frontal (Fp1, Fp2, F3, Fz,

F4, F8). We quantified relative power in all human data
analyses to account for variability in the amplitude of raw
signals (higher variability than seen in mouse). Sleep/wake
coding and artifact removal resulted in noncontinuous
signals. We did not concatenate processed signals together;
instead, we analyzed all 2-s bins (with 1-s overlap) of active
signal. We averaged spectra and delta power from all active
bins. This approach diverged slightly from mouse LFP
analysis, where we performed spectral analysis on the con-
tinuous signal. However, as noted above, adapting these
methods to mice resulted in no change in the values of delta.

Statistical analysis
In mouse, we compared power (raw or relative, as noted) in
a given band of interest (delta, gamma, etc.) using Student’s

Table 1 Characteristics of study subjects

Neurotypical Angelman

Total patients 72 28

Age (years) 7.0 ± 0.2 5.8 ± 0.3

Male 42 (58%) 14 (50%)

Female 30 (42%) 14 (50%)

Molecular diagnosis N/A Class 1
deletion: 7
Class 2
deletion: 10
UBE3A
mutation: 6
Atypical
deletion: 2
Uniparental
disomy: 1
Imprinting
defect: 1
Abnormal
DNA methylation,
negative for
deletion: 1

History of seizures 0 (0%) 26 (93%)

Patients with wake in EEG 54 (75%) 26 (93%)

Age (years) 6.6 ± 0.3 5.8 ± 0.3

Male 30 (56%) 14 (54%)

Female 24 (44%) 12 (46%)

Wakeful EEG length (min) 7.9 ± 1.0 18.2 ± 2.3

Seizures under control at
time of first recording or
no seizure history

54 (100%) 24 (92%)

Patients with sleep in EEG 54 (75%) 13 (46%)

Age (years) 7.1 ± 0.3 6.0 ± 0.4

Male 32 (59%) 8 (62%)

Female 22 (41%) 5 (38%)

Sleep EEG length (min) 13.6 ± 0.8 22.0 ± 2.4

Seizures under control at time
of first recording or no seizure
history

54 (100%) 12 (92%)
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t tests (Fig. 1e–i, Additional files 1: Figure S1C, D and 2:
Figure S2D–J). We compared group delta distributions
using a Kolmogorov-Smirnov (K-S) test (Fig. 2f). We
assessed delta dynamics (IQR) and the number of strong
delta bouts using Student’s t tests (Fig. 2g–i). In human, we
compared delta power and delta dynamics (IQR) within
each region using Student’s t tests (Figs. 3f, g and 4f, g). We
assessed the effects of age and genotype on delta power and
dynamics in a cross-sectional sample using a two-way
ANOVA with age (as a continuous measure) and genotype
as factors (Fig. 5a, b, e, f). As there was a significant main
effect of age on delta power in the total sample, we used a
post hoc one-way ANOVA with age (as a continuous
measure) as a factor to the age dependence of delta power
within the AS group (Fig. 5a). We assessed the effect of age
on delta in a longitudinal sample using a linear mixed
model examining the fixed main effect of age on either
power or dynamics, including the random effect of age
nested in each subject in order to account for individual
differences in the ages and age intervals of each repeated
measure (Fig 5c, d). We assessed the effects of age and
genotype in a combined sample containing all EEG sessions
using a two-way ANOVA with age and genotype as factors;
we used Bonferroni tests to make post hoc comparisons
between groups within each age range (Fig. 5g, h). We used
GraphPad Prism and JMP software (SAS) to perform
statistical analyses.

Results
Angelman syndrome model mice have increased delta
power
We previously showed that deletion of Ube3a from
GABAergic neurons, but not glutamatergic neurons,
increased delta rhythmicity and caused an exaggerated
increase in seizure susceptibility compared to AS model
mice with pan-cellular loss of the maternal Ube3a allele
(Ube3am−/p+) [30]. While these studies provided insights
into the importance of Ube3a loss in GABAergic neurons
to hyperexcitability phenotypes in AS, it is critically import-
ant to fully assess whether Ube3am−/p+ mice accurately
reflect clinical EEG phenotypes and to establish objective
measures in both the preclinical mouse model and the
clinical AS population. Towards this goal, we first quantified
delta in Ube3am−/p+ mice and wild-type littermate controls
(Ube3am+/p+). Because delta rhythmicity was reported to be
strong in the occipital cortex in humans with AS [20, 21],
we implanted electrodes into layer 4 of the primary visual
cortex and recorded local field potentials (LFPs) (Fig. 1a).
Direct brain implantation distinguishes LFP recordings from
traditional scalp EEG and provides a more accurate reflec-
tion of local neural activity [32]. To approximate a resting
state, we recorded LFP in awake, head-fixed mice viewing a
static gray screen in a dark, quiet environment to which
they were previously habituated. We compared AS model

mice to wild-type littermates separately in two commonly
used mouse strains in AS research: 129 and C57BL/6.
AS model mice on a 129 background showed enhanced

delta (2–4 Hz) power (Fig. 1b–e). Genotypic differences in
LFP power were restricted to the delta band (Fig. 1f–i). LFP
power within a band of interest is often represented as a
fraction of total power (relative power), and we found that
relative delta power was also significantly increased in AS
model mice (Fig. 1j). However, for other frequency bands,
genotypic differences in relative power must be interpreted
with caution: because total power must summate to 100%,
increases in delta (which normally accounts for a dispro-
portionate ~20% of total power) may also manifest in
artifactual or misleading relative power differences in other
bands. For example, AS model mice displayed statistically
decreased relative theta and relative gamma power
(Additional file 1: Figure S1), despite normal raw power in
these bands. Therefore, raw and relative analyses of delta
power may be interchangeable in AS model mice, but
group differences in relative power outside of delta can be
misleading if delta itself shows group differences.
Delta power in the primary visual cortex was not sig-

nificantly different between WT and AS mice on a
C57BL/6 background (Additional file 2: Figure S2A–F).
AS mice showed a trend towards increased raw power in
the 3–5 Hz range (Additional file 2: Figure S2G) and a
statistically significant increase in relative 3–5 Hz power
(Additional file 2: Figure S2H). Total power (1–50 Hz) was
not different as a function of genotype (Additional file 2:
Figure S2I). Surprisingly, gamma power (both raw and
relative) was decreased in AS mice on a C57 background
(Additional file 2: Figure S2J, K). Beta power (both raw and
relative) were not different as a function of genotype
(Additional file 2: Figure S2L, M).

Angelman syndrome model mice exhibit more dynamic
delta oscillations
We sought to understand the nature of increased delta
power in AS model mice. Broadly, the overall increase in
delta power in AS could be driven by (a) short bouts of
very strong delta, (b) a consistent moderate increase in
delta, or (c) a more complex pattern. We thus quantified
the distribution of delta power across time within individual
recordings. First, we quantified delta power during every 2-
s window of continuous LFP recordings (Fig. 2a, b) and an-
alyzed the distribution of these measurements (Fig. 2c, d).
On both 129 and C57 backgrounds, WT and AS mice had
statistically different distributions of delta power over time,
with AS distributions shifted towards having more periods
of stronger delta. However, this approach—group averaging
of individual delta distributions—is unable to determine
whether group differences between WT and AS are driven
by within-animal differences or across-animal differences.
Therefore, we assessed delta variability, or dynamics, within
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single recording sessions. Within each session, we repre-
sented delta power in every 2-s window as a box plot. We
quantified delta dynamics in two ways: (1) interquartile
range (IQR), as a proxy for the range of “typical” delta, and
(2) fraction of suprathreshold bins (where threshold =Q3 +
1.5*IQR), as a way to assess the amount of “strong” delta
bouts (Fig. 2e, f). AS mice showed increased IQR, indicat-
ing that delta power is more dynamic within a session.
Delta was more dynamic in AS mice on both 129 and C57
backgrounds, using both raw and relative power as mea-
sures (Fig. 2e, f). There was no increase in the number of
strong delta bouts in AS mice on either background
(Fig. 2g), indicating that delta power phenotypes in AS
model mice were not driven by discrete bouts of abnor-
mally strong delta oscillations. There were actually fewer
strong delta bouts in AS mice relative to WT, but this was
likely driven by increased IQR in these mice, resulting in a
higher threshold for defining a strong bout. Overall, we
found that delta power was more variable across time (i.e.,
“dynamic”) within single recording sessions in AS model
mice.

Children with Angelman syndrome exhibit enhanced
delta power and dynamics
Employing similar methods used to quantify mouse LFPs,
we compared delta power and dynamics from retrospect-
ive clinical EEGs in children with AS and age-matched
neurotypical controls. EEG recordings contained periods
of both wakefulness and sleep, presenting a potential con-
found. Children with AS have severe sleep disturbances
[1], potentially biasing their EEG recordings towards
wakefulness. Indeed, 15/47 total EEGs from AS individ-
uals included periods of sleep (32%), while 54/72 total
EEGs from neurotypical individuals included periods of
sleep (75%). Because enhanced delta is a signature of
slow-wave sleep [33], we separately analyzed EEG in wake
and sleep states between groups. Another potential con-
found was the high incidence of epilepsy (80-95%) in AS
patient populations [1]. In our sample, 26/28 AS individuals
(93%) had a history of seizures (1 no seizures, 1 unknown),
and no neurotypical individuals had a history of seizures
(Table 1; for raw data, see Additional file 4). However, most
(24/26) children with a history of seizures were on at least
one medication at the time of their first EEG, and most
(24/26) children’s seizures were under control at the time
of their first EEG (1 with persistent seizures, 1 unknown).
We quantified delta power and dynamics for each EEG

electrode and group-averaged neighboring electrodes by
region (Fig. 3a). During wakefulness, children with
AS (n = 26) showed strongly increased delta power
and delta dynamics relative to neurotypical controls
(n = 54) (Fig. 3b–g; Additional files 3: Figure S3 and
5: Figure S4A–C). Delta power and dynamics were
increased in every spatially defined region, suggesting

that delta phenotypes generalize across the neocor-
tex. While delta phenotypes were present across all
recording areas in group-averaged data, individual
recordings did show some spatially restricted delta
bouts (Additional file 5: Figure S4D–F). As expected,
periods of manually identified sleep showed increased
delta power relative to periods of wakefulness in both
AS and neurotypical children (Fig. 4a; compare Figs. 3f
and 4f ). During sleep, delta power and dynamics were
increased in children with AS (n = 13) relative to neu-
rotypical controls (n = 54) in all regions (Fig. 4b–g;
Additional file 3: Figure S3). Manual inspection of
traces revealed that our sample included other EEG
signatures, such as “notched” delta (Additional file 5:
Figure S4G–I), that have been previously reported in
children with AS [20]. As some antiepileptic medica-
tions are known to cause EEG slowing [34], we con-
firmed that the two children with AS not taking
medication displayed elevated delta power (awake
occipital relative delta power in NT, 21.7 ± 0.6%; in
AS, 39.3 ± 1.6%; in child 1, age 4, 49.6%; in child 2,
age 5, 52.1%). Thus, it is not likely that delta pheno-
types in children with AS were caused by antiepileptic
medications.

Delta power in Angelman syndrome is age-dependent
Our initial sample (analyzed in Figs. 3 and 4) included one
EEG session per child, age 4–11. This cross-sectional sam-
ple showed an age-dependent decrease in occipital delta
power during wakefulness, independent of genotype (Fig. 5a;
two-way ANOVA, main effect of genotype: p < 0.0001,
main effect of age: p = 0.0011). Occipital delta power de-
creased with age in children with AS (p = 0.041, post hoc
test); this result supports qualitative clinical observations
from a sample of children with AS ranging in age from 0.4
to 25 years [21]. However, there was no statistical difference
in delta power trajectories between AS and neurotypical
groups (genotype × age interaction: p = 0.0801). Occipital
delta dynamics during wakefulness (Fig. 5b) also varied with
genotype (p < 0.001), though there was not a statistically
significant effect of age on dynamics (p = 0.069) or an inter-
action between genotype and age (p = 0.769).
If delta phenotypes are to be a useful biomarker in AS,

they must remain stable or follow a predictable develop-
mental trajectory within subjects. We thus quantified delta
power and dynamics longitudinally in a subset of AS indi-
viduals from the original sample, where follow-up EEG re-
cordings were available. We analyzed longitudinal EEGs
(two to four per child) from 13/28 children, spanning up to
7 years. Twelve of 13 children had multiple recordings with
periods of wakefulness; only two of 13 had multiple record-
ings with periods of sleep. Within subjects, there was a sig-
nificant main effect of age on delta power during
wakefulness (p < 0.0001), confirming that individuals
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showed developmental trajectories of reduced delta in line
with cross-sectional data (Fig. 5c). Longitudinal assessment
also revealed a significant main effect of age on delta dy-
namics (IQR) in children with AS (p = 0.0003; Fig. 5d).
During sleep, cross-sectional analyses revealed that delta
power in AS individuals was not significantly age-
dependent (Fig. 5e; two-way ANOVA, main effect of
genotype: p < 0.0001, main effect of age: p = 0.458, genotype
× age interaction: p = 0.658). Additionally, delta dynamics
during sleep were not significantly age-dependent
(Fig. 5f; main effect of genotype: p < 0.0001, main
effect of age: p = 0.259, genotype × age interaction:
p = 0.645).
Overall, cross-sectional and longitudinal analyses indi-

cated that during wakefulness, delta phenotypes in AS were
more pronounced at earlier ages. We next sought to deter-
mine whether enhanced delta rhythms persisted in older
children despite the developmental trajectory in AS individ-
uals towards reduced delta. Overall, we compared 44 awake
EEGs from 26 children with AS (combined cross-sectional
and longitudinal data) to 54 wake EEGs, one per neurotypi-
cal child, and assessed delta phenotypes in three age ranges
(in years): 4–6, 6–8, and 8+. During wakefulness, delta
power and delta dynamics were significantly increased at all
ages in children with AS (Fig. 5g). During sleep (AS: n = 15
sessions from 13 children; NT: n = 54 sessions, one per
child), delta power and dynamics were significantly
increased at age 4–6 and age 6–8; we analyzed only one
sleep EEG from a child with AS older than 8 (Fig. 5h).

Discussion
Rhythmic delta is the most pervasive EEG abnormality in
AS, but delta phenotypes have not been previously quanti-
fied. If delta oscillations are to be an effective biomarker,
quantitative methods are required to track acute or longi-
tudinal changes in rhythmicity. Here, we used spectral
analyses to confirm that delta abnormalities in AS model
mice mirror clinical reports from the AS patient popula-
tion (Fig. 1). Using similar methods, we quantified robust
delta phenotypes in children with AS across the neocortex
during wake and sleep (Figs. 3 and 4), showing that the
enhanced delta phenotype scales in a state-dependent
manner. The enhanced delta activity in AS individuals
followed a predictable developmental trajectory across
subjects and within subjects (Fig. 5). While delta pheno-
types were stronger at earlier ages, they persisted in all age
groups tested (4–11 years), demonstrating that delta activ-
ity may be useful as a longitudinal biomarker, in addition
to its utility as an acute biomarker in young children.
Spectral analyses revealed increased dynamics, or variabil-
ity, of delta oscillations within single sessions in both AS
model mice and children with AS (Figs. 2 and 4). This
phenotype had not been described in a patient population

and would be difficult to visualize and assess clinically
without quantitative methods.
With multiple approaches currently being developed

for clinical trials in AS, reliable and robust biomarkers
are needed. Characteristics of a strong disease biomarker
also include face validity and evidence for reversibility in
a mouse model. Here, we showed that abnormal delta
rhythmicity is conserved between mouse models and pa-
tient populations in AS, and prior work showed that in-
creased delta power may be reversed in AS model mice
by embryonic reinstatement of the UBE3A protein in a
subset of neurons [30]. To date, phenotypic behaviors
have been characterized in AS model mice with varying
reliability [35] and include sensory, motor, and learning
impairments [11, 23]. Taken together, mouse behavioral
phenotypes generally resemble human symptoms, but
their direct face validity is limited and, thus, are not
ideal biomarkers. One exception to this rule is seizures,
which may be robustly and reliably induced in AS mouse
models [23, 30]. However, the use of seizures as a bio-
marker in AS children is limited; seizures are typically
treated with antiepileptic medications and are controlled
to a great extent in the majority of children [36]. Delta
rhythmicity represents a robust, reliable biomarker with
strong face validity between mouse models and patient
populations.
We observed strain differences in delta phenotypes in

AS model mice: delta power (2–4 Hz) was increased in
AS on a 129 background (Fig. 1), but not on a C57BL/6
background (Additional file 2: Figure S2), despite a trend
towards increased power in the 3–5-Hz band. Despite
statistically normal delta power, AS model mice on a
C57BL/6 background did show increased delta dynamics
(Fig. 2). Thus, while delta power phenotypes may be
strain-specific, abnormal delta dynamics are preserved
across two commonly used strains for AS research.
Strain differences in delta power are not surprising, as
behavioral differences have also been noted between AS
mice on 129 and C57BL/6 backgrounds [35].
Quantitative assessment of retrospective human EEG

data revealed a robust increase in delta power in chil-
dren with AS. These results support clinical reports
[14–22], and our data validate the utility of quantifying
delta activity pre- and post-intervention to track acute
and sustained consequences of therapeutic interventions.
Spectral analyses also address the nature of delta abnor-
malities in AS in a manner not possible by clinician re-
view. Our study of within-session delta dynamics
revealed that delta oscillations are more variable in AS,
but are not confined to intermittent bouts.
Clinically, delta abnormalities have been observed in both

posterior (73% of patients) and anterior (59%) regions [21],
with potential differences in the type of delta seen by region
[37]. We found that delta phenotypes (increased power and

Sidorov et al. Journal of Neurodevelopmental Disorders  (2017) 9:17 Page 10 of 14



dynamics) generalized across the neocortex in a large sam-
ple (Figs. 3 and 4). However, spatially restricted runs of
delta were observed within individual recordings
(Additional file 5: Figure S4). Additionally, while spectral
analyses provide an unbiased method to quantify power
within a band of interest, a disadvantage of their use is an
inability to dissociate subtle variants of delta, such as
notched delta (Additional file 5: Figure S4), which have
been noted in clinical studies of AS [17, 20, 22]. Thus,
spectral analyses are best suited for quantifying broad
delta biomarkers. We chose to focus on delta rhyth-
micity because it is the most common EEG abnor-
mality in AS and the most specific abnormality to AS
relative to related disorders [20, 24]. However, interic-
tal epileptiform discharges and theta abnormalities
have also been widely reported [14, 17, 20, 21, 38].
Epileptiform discharges are typically coincident with
rhythmic delta [37] and are therefore likely captured
by using delta power as a biomarker; our analyses did
not distinguish epileptiform discharges in the 2–4-Hz
frequency band from background delta rhythms. In-
creased theta (~4–6 Hz in human) has been noted in
~30–60% of children with AS (Additional file 5:
Figure S4), but is age-dependent and rarely observed
beyond age 8 [17, 20, 21]. Thus, we were not
surprised to see normal theta in adult AS model mice
(Fig. 1, Additional file 2: Figure S2). Quantitative as-
sessment of theta and other bands in human EEG
data were complicated by our a priori hypothesis that
delta is increased and by the limits imposed by quan-
tifying relative power (see “Results” or “Methods”).
Enhanced delta rhythmicity is a signature of slow-wave

sleep, and our quantification confirmed that delta rhythms
are indeed increased in neurotypical individuals during
sleep epochs (Fig. 4). In AS individuals, delta rhythms are
also increased during sleep relative to wakefulness, and
thus, the enhanced delta phenotypes are preserved and
scaled with state changes. These data show that it is crit-
ical to identify and separate wakeful and sleep epochs dur-
ing EEG recordings but that delta remains an effective
biomarker when making state-specific comparisons. En-
hanced delta does not appear to broadly disrupt sleep
architecture. Children with AS show typical sleep archi-
tecture such as sleep spindles and vertex waves. While
there may be some disruption in sleep architecture, these
appear to be minor compared to the significant effects of
sleep-activated discharges on sleep architecture.
In addition to generalizing across sleep and wake, delta

phenotypes in AS are also present across childhood de-
velopment. We found a developmental reduction in
delta power in AS; however, delta phenotypes persisted
in all age ranges tested, to 12 years (Fig. 5). Thus, delta
remains a valid biomarker throughout childhood and
may be used as interventions and clinical trials are likely

to occur in children of all ages. It is not clear whether
the developmental attenuation of delta phenotypes is
directly linked to loss of UBE3A. The attenuation of
delta activity may be related to a secondary feature of
AS, such as improvements in epilepsy and sleep at older
ages [39]. It is also not yet known how delta phenotypes
correlate with clinical features of AS such as epilepsy se-
verity, sleep, and behavioral, cognitive, and motor im-
pairments. However, in mice, cell type-specific
manipulations of UBE3A that increase delta power also
increase seizure susceptibility, and those that do not
affect delta also do not affect seizures [30].
Our work represents the first direct comparison of EEGs

from children with AS and neurotypical controls. However,
an inherent limit of our retrospective EEG analyses was that
AS data and neurotypical data were gathered at two differ-
ent sites. We processed and analyzed all data in parallel and
were encouraged by the robustness of phenotypes, but fu-
ture prospective studies should be designed to recruit AS
and control patients to a single site. In addition, intellectual
disability in children with AS presents a potential confound,
as EEG slowing has been associated with cognitive impair-
ment in several populations [40, 41]. Future work compar-
ing AS to other reference groups (i.e., nonsyndromic
seizure, intellectual disability, autism) will be critical to un-
derstanding the extent to which other disorders may exhibit
delta phenotypes. AS may be considered an autism-like dis-
order, as a subset of children with AS also meet the diag-
nostic criteria for autism [42–44]. Quantitative EEG
methods have characterized some spectral and coherence
phenotypes in nonsyndromic autism [29, 45–51], yet the
genetic heterogeneity of nonsyndromic autism introduces
challenges in finding common EEG biomarkers. However,
recent work has identified EEG signatures of Dup15q
syndrome, a syndromic form of autism caused by duplica-
tion of the 15q11-13 genetic region which includes UBE3A
[4–6]. The most profound EEG abnormality in Dup15q is
increased beta rhythmicity, which is normal in AS model
mice (Fig. 1, Additional files 1: Figure S1 and 2: Figure S2),
but decreased delta power has also been noted in Dup15q
individuals [52–54]. Thus, bidirectional changes in UBE3A
gene dosage are linked to mirror symmetric changes in
delta power, suggesting a critical role for UBE3A protein in
regulating delta-generating brain circuits.
Fragile X syndrome, another single-gene disorder asso-

ciated with autism, provides a case study in the import-
ance of defining reliable biomarkers for use as clinical
outcome measures. A series of mechanism-based pharma-
cological studies in mice sought to normalize synaptic
protein synthesis, a key pathological feature of Fragile X
[55–57]. Pharmacological interventions directed towards
normalizing protein synthesis were highly successful in
correcting Fragile X phenotypes in mice [58–60], ultim-
ately leading to multiple phase 2 clinical trials [61, 62].
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These well-designed and well-powered trials ultimately
failed because no improvements were seen in predefined
behavioral endpoints [63]. While other aspects of these
studies were also relevant to their outcomes, such as the
age of children enrolled and the duration of treatments,
this work provides a rationale to develop biologically
based, quantitative, robust, and repeatable outcome mea-
sures for clinical trials. We propose that delta rhythmicity
meets these criteria for Angelman syndrome.

Conclusions
Delta rhythmicity phenotypes are quantifiable and ro-
bust in children with Angelman syndrome and in mouse
models of the disorder. Delta phenotypes have strong
face validity between mouse models and patient popula-
tions; thus, future mechanistic studies of delta rhythms
in mice will have high translational potential. In patient
populations, delta phenotypes have value as biomarkers
to chart progression of AS and as clinical outcome
measures.

Additional files

Additional file 1: Figure S1. Quantifying relative power preserves delta
phenotypes in AS model mice, but complicates interpretations in other
bands. (A, B) Relative power in 129 mice (WT: n = 23, AS: n = 24), plotted
as a fraction of total power (1–50 Hz). Quantification of relative (C) theta, (D)
beta, and (E) gamma power. Relative theta and gamma are significantly
decreased in AS model mice on a 129 background (theta: *p = 0.013, beta:
p = .209, gamma: **p = 0.0007, Student’s t test). (PDF 131 kb)

Additional file 2: Figure S2. Strain differences in the primary visual
cortex LFP power in Angelman syndrome model mice. (A, B) Power
spectra of group data (WT: n = 30, AS: n = 39; shading indicates ±sem)
from the primary visual cortex in C57BL/6 mice. (C, D) Power spectra,
measured relative to total power. (E) Raw and (F) relative delta power are
not different between WT and AS (raw: p = 0.277, relative: #p = 0.073,
Student’s t tests). (G) Raw power in the 3–5-Hz band is not different
between WT and AS (#p = 0.077). (H) Relative power in the 3–5-Hz band
is significantly increased in AS model mice (**p = 0.0052). (I) Total power
(1–50 Hz) is not different between groups (p = 0.460). (J) Raw and (K)
relative gamma power are decreased in AS model mice on a C57BL/6
background (raw: *p = 0.022, relative: ***p = 0.00074). (L) Raw and (M)
relative beta power are not different between groups (raw: p = .476,
relative: p = .166) (PDF 179 kb)

Additional file 3: Figure S3. Power spectra from all regions during
epochs of wake and sleep. Black: neurotypical (NT), red: AS. During
wakefulness (NT: n = 54, AS: n = 26), (A) occipital, (B) temporal, (C) parietal,
(D) central, and (E) frontal spectra. During sleep (NT: n = 54, AS: n = 13),
(F) occipital, (G) temporal, (H) parietal, (I) central, and (J) frontal spectra.
(PDF 896 kb)

Additional file 4: Seizure and medication history for children with AS.
This file is a table that provides the following information for each child
with AS where it was available: (1) age at EEG, (2) gender, (3) molecular
diagnosis, (4) history of seizures (yes/no), (5) age of onset of seizures, (6)
seizures controlled at the time of EEG (yes/no), (7) types of seizures in the
past, and (8) medications at the time of EEG. (XLS 36 kb)

Additional file 5: Figure S4. Examples of EEG variants in children with
Angelman syndrome. (A–C) Three examples of enhanced delta
oscillations generalized across the neocortex. (D) An example of delta
oscillations restricted to posterior electrodes. (E) An example of delta
oscillations restricted to frontal electrodes. (F) An example of delta

oscillations restricted to frontal electrodes over the left hemisphere. (G, H)
Examples of notched delta. (I) An example of theta oscillations.
(PDF 9020 kb)
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