
REVIEW Open Access

Attention deficit hyperactivity disorder
(ADHD) in phenotypically similar
neurogenetic conditions: Turner syndrome
and the RASopathies
Tamar Green1, Paige E. Naylor2 and William Davies3,4,5*

Abstract

Background: ADHD (attention deficit hyperactivity disorder) is a common neurodevelopmental disorder. There has
been extensive clinical and basic research in the field of ADHD over the past 20 years, but the mechanisms underlying
ADHD risk are multifactorial, complex and heterogeneous and, as yet, are poorly defined. In this review, we argue that
one approach to address this challenge is to study well-defined disorders to provide insights into potential biological
pathways that may be involved in idiopathic ADHD.

Main body: To address this premise, we selected two neurogenetic conditions that are associated with significantly
increased ADHD risk: Turner syndrome and the RASopathies (of which Noonan syndrome and neurofibromatosis type
1 are the best-defined with regard to ADHD-related phenotypes). These syndromes were chosen for two main reasons:
first, because intellectual functioning is relatively preserved, and second, because they are strikingly phenotypically
similar but are etiologically distinct. We review the cognitive, behavioural, neural and cellular phenotypes associated
with these conditions and examine their relevance as a model for idiopathic ADHD.

Conclusion: We conclude by discussing current and future opportunities in the clinical and basic research of these
conditions, which, in turn, may shed light upon the biological pathways underlying idiopathic ADHD.

Keywords: Attention deficit hyperactivity disorder, Neurofibromatosis type 1, Noonan syndrome, RASopathies, Turner
syndrome, X chromosome

Background
ADHD (attention deficit hyperactivity disorder, also
known as hyperkinetic disorder) is currently defined in
diagnostic manuals such as DSM-5 [1] and ICD-10 [2]
by a collection of persistent and impairing cognitive and
behavioural symptoms, notably inattention, hyperactivity
and pathological impulsivity. ADHD is the most com-
mon neurodevelopmental disorder in the USA, affecting
up to 10% of children and exhibiting a pronounced
male-biased diagnostic prevalence [3]. The biological

and environmental mechanisms underlying ADHD risk
are multifactorial, complex and heterogeneous [4, 5]
and, as yet, are poorly defined. There is accumulating
evidence that ADHD is associated with structural and
functional abnormalities across multiple brain circuits,
notably reduced volume of the basal ganglia, thinning of
the frontal and parietal cortex, and functional connecti-
vity between these regions [6]. In the absence of an
established pathophysiology, we are limited to using
treatments that target symptoms rather than core cellu-
lar and molecular abnormalities; as a result, the efficacy
and side-effect profile of these therapies is sub-optimal
and treatments cannot directly influence the course of
the disorder.
Identifying and characterising the many dysfunctional

biological pathways that culminate in the development
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of ADHD is a difficult, perhaps intractable, problem. On
the one hand, studying children and adults with idio-
pathic ADHD is hindered by limited sample sizes and
other issues that stem from within-group heterogeneity.
On the other hand, it is difficult to model the complex
cognitive and behavioural abnormalities seen in indivi-
duals with ADHD in animal models where experimental
control is more feasible. The study of well-defined neu-
rogenetic conditions in man circumvents, to some ex-
tent, challenges associated with etiological heterogeneity,
whilst allowing the measurement of complex human
behaviours in children and adult with these conditions.
In this review, we examine the premise that human neu-

rogenetic conditions that are associated with increased
ADHD rates may help to provide converging evidence for
biological pathways involved in the development of idio-
pathic ADHD. Specifically, we compare two phenotypi-
cally similar classes of human genetic conditions that may
serve as such ‘experimental models’: Turner syndrome
(TS) and the RASopathies. Of the known RASopathies,
we focus on Noonan syndrome (NS) and neurofibroma-
tosis type 1 (NF-1), conditions about which most data has
been collated in the literature. Moreover, whilst ADHD
symptomatology is reported across all of the RASopathies,
including Costello syndrome, LEOPARD syndrome, and
cardiofaciocutaneous syndrome (CFC), these disorders are
associated with pervasive effects on global cognitive func-
tion that might confound more specific genetic effects on
ADHD-related symptoms [7]. TS, NF1 and Noonan syn-
drome are mechanistically distinct conditions which result
in phenotypically aberrant behaviours and cognitive pro-
cesses, but individuals affected by these conditions have
similar overall cognitive profiles which lie within the nor-
mal range (Table 1). Importantly, the two classes of condi-
tion show striking overlap with regard to their associated
anatomical/physiological phenotypes (Table 1) and, as
such, there may feasibly be some degree of convergence
across both with respect to the biological mechanisms
underlying ADHD risk; clarifying the level at which the
genetically distinct aetiologies in TS and the RASopathies
might ultimately impact upon common brain substrates
underlying ADHD-related phenotypes (e.g. molecular, cel-
lular or brain circuit) will comprise an important avenue
for future research. We start by critically reviewing the
existing clinical and animal model literature relating to
cognitive, behavioural, neural and cellular phenotypes in
these conditions (Fig. 1) and examine their relevance as a
model for idiopathic ADHD.

ADHD-related behavioural and cognitive
phenotypes in TS, NF1 and NS
Significantly increased (~18-fold) rates of ADHD have
been reported in TS (~24%) relative to the general fe-
male population (1.3%) [8] whilst substantially elevated

rates of ADHD have also been reported in several of the
RASopathies, including NF1 and NS, relative to the ge-
neral population [9, 10]. For example, it has been re-
ported that in children with NF1, 38–49% meet
diagnostic criteria for ADHD, whilst an even larger pro-
portion experience considerable difficulties with sus-
tained attention [9, 11]. Children with NF1 also exhibit
high rates of explicit autism spectrum disorder (~25% of
cases) and autistic symptoms (~50% of cases), but these
diagnoses appear dissociable from ADHD-related beha-
viours [12]. ~31% of children with NS have been re-
ported to meet diagnostic criteria for ADHD [10]. It
should be acknowledged that there may be an over-
estimation of psychological issues in TS, NF1 and NS
populations arising from an ascertainment bias whereby
individuals with neurogenetic conditions are monitored
and assessed disproportionately deeply compared to
members of the general population.
The presentation of ADHD-related symptoms can vary

between TS, NF1 and NS. Girls with TS and ADHD
present with pronounced hyperactivity (comparable to
levels seen in idiopathic ADHD in boys) [13] and are
more likely to be diagnosed with the hyperactive-
impulsive presentation of the disorder [8]. Attention and
executive function deficits are, however, also apparent in
this population, and appear to be independent of other
cognitive deficits characteristic of this population such
as visuospatial impairment and general cognitive ability;
interestingly, there appears to be a bimodal distribution
within the TS group with regard to one measure of at-
tentional function [10]. In NF1 and NS, the primary
ADHD-related symptoms appear to be difficulties with
attention. In both groups, parental reports indicate that
children have clinically significant difficulties with self-
monitoring (36.5% children with NF1 and 38% of
children with NS) and planning-organisation (42.9%
children with NF1 and 38% with NS) [10, 14]. Direct
neuropsychological measures of ADHD-related beha-
viours also indicate that both children with NF1 and NS
experience significant difficulties with sustained atten-
tion and inhibition. However, obtaining accurate mea-
sures of ADHD-related behaviours in the RASopathies is
difficult; in some studies, assessments of children with
severe ADHD were excluded due to concerns regarding
their validity [10], and there is some degree of hetero-
geneity within the clinical population and in terms of
the assessment measures used (and the reporting of as-
sociated results).
An important question regarding ADHD-related phe-

notypes in these syndromes is whether they are the cul-
mination of relatively discrete disruption to molecular,
cellular and neural pathways, or whether they are simply
a subset of the many adverse neurobehavioural conse-
quences arising from gross brain maldevelopment; the
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fact that IQ is generally preserved across all three condi-
tions indicates the former. Overall therefore, TS, NF1
and NS might be regarded as behavioural models of spe-
cific subtypes, or symptoms, of ADHD in the absence of
general cognitive impairments. Currently, there is little

clinical and neuropsychological information available
that may indicate areas of commonality and difference
across the three syndromes, and there is undoubtedly a
need for further research in this area. Parallel in vivo
and in vitro studies such as neuroimaging and animal/
cellular model work may enable us to understand how
similarities and differences in neuroanatomy, neuro-
physiology and neurochemistry across the three syn-
dromes can contribute towards commonalities and
dissociations in behavioural and cognitive phenotypes.

Brain phenotype in TS, NF1 and NS: clinical and
animal model evidence
In TS, although total brain volume appears comparable
to that of healthy controls, there is evidence for de-
creased volumes of the cortex (particularly in parietal
and occipital regions), hippocampus, thalamus and basal
ganglia [15, 16]. The structure of the parietal lobe [16–18]
and its connectivity with other cortical regions (notably
the frontal cortex) [19, 20] appear to differ between
individuals with TS and controls. In addition, task-based
[21–23] and resting-state [24] functional connectivity
measures between the frontal and parietal cortex are re-
duced in girls with TS. Together, these data provide a pos-
sible neural mechanism underlying attention problems
and hyperactivity in TS.
Ongoing studies in mouse models with varying sex

chromosomal complements are attempting to refine the
brain sites that are most sensitive to X and Y chromosome

Fig. 1 Human disease model as a framework for the study of ADHD.
This framework theoretically models complex human behaviour not
available through mouse models for relatively genetically homogeneous
populations compared to the study of heterogenic populations
with ADHD. The structure of the current review is provided on
the Y axis, including the cognitive, behavioural, neural and cellular
phenotypes associated with Turner syndrome, Noonan syndrome,
and neurofibromatosis type 1

Table 1 The genetic mutations, protein products, clinical features, and general intellectual functioning associated with TS, NS
and NF1

Genetic mutation Protein Clinical phenotype General cognitive
functioning

Turner syndrome X chromosome
partial (mosaic)/
complete deletion

Reduced expression of
gene products encoded
by X-linked genes escaping
X-inactivation [121]

Renal/endocrine problems, cardiac defects,
short stature, webbed neck, eyelid ptosis,
increased inter-nipple distance [114, 116]

Mosaic/partial X
chromosome absence:
VIQ: 96.2 ± 15.9
PIQ: 79.5 ± 18.8
Complete X
chromosome absence:
VIQ: 106.4 ± 14.4
PIQ: 82.1 ± 15.9
[48]

Noonan syndrome - PTPN11 (50%) ⇒ ⇑ Shp2 tyrosine
phosphate enzyme

Short stature, webbed neck, eyelid ptosis,
increased inter-nipple distance, cardiac
defects, bleeding disorders [114, 115, 117, 118]

VIQ: 82.3 ± 20.0
PIQ: 87.1 ± 23.0
(May vary depending
upon specific mutation
[119, 120])

- SOS1 (10–15%) ⇒ ⇑ “Son Of Sevenless 1” protein

- RAF1 (5–10%) ⇒ ⇑ Serine-threonine kinase
activating MEK1/MEK2

- KRAS (0–5%) ⇒
[111]

Missense mutation KRAS
Isoform B [118]

- Other rare
mutations

Neurofibromatosis
type 1

NF1 gene
microdeletion
(chromosome
17q11) [112]

⇓ Neurofibromin [113] Café-au-lait spots, intertriginous freckling,
Lisch nodules, neurofibromas, optic
pathway gliomas, distinctive bony
lesions [111-113]

VIQ: 91.9 ± 14.7
PIQ: 91.1 ± 12.8
[11]

VIQ verbal IQ, PIQ performance IQ)
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dosage and that may therefore play a role in sex-biased
cognitive constructs, including vulnerability to neurodeve-
lopmental disorders such as autism and ADHD; interest-
ingly, these appear to include systems previously
implicated in ADHD vulnerability including the forebrain
cholinergic system and cerebelo-pontine-thalamo-cortical
circuitry [25]. The X-monosomic 39,XO mouse model
[26] appears to recapitulate, to some extent, the parietal
cortex and striatal structural abnormalities reported in TS
[25]. However, it should be noted that the extrapolation of
any findings from this work to humans is limited by the
fact that there are far fewer X-escapees in the mouse
than in human, and the physiological consequences of
X-monosomy in the mouse are likely to be different,
and generally less severe, than in human [27].
At a structural level, the brains of subjects haploinsuf-

ficient for NF1 appear grossly normal, although hyperin-
tensities, possibly reflecting aberrant myelin formations,
are seen in patient MRI scans [28]. In the basal ganglia,
thalamus and brainstem of patients, such hyperintensi-
ties tend to resolve over time (possibly as a consequence
of improved efficiency within white matter tracts) and
this resolution appears to be related to cognitive im-
provements, indicating likely pathogenicity [29]. There is
some, albeit limited, evidence for aberrant brain struc-
ture and function in NF1, compared to controls. Indivi-
duals with NF1 may exhibit increased total grey [30] and
white [31] matter volume, larger hippocampal and palli-
dum volumes bilaterally [32], aberrant white matter
microstructure (as indexed by increased diffusivity) [33]
and abnormal functional connectivity between regions
underlying social and cognitive function [34], particu-
larly in the anterior-posterior axis [35]. Mouse models in
which NF1 is conditionally ablated in embryonic cere-
bellar progenitors or neonatal granule neuron progeni-
tors exhibit abnormal cerebellar layering and structure
[36], a finding which indicates a critical role for NF1 in
normal cerebellar development, and which suggests a
possible neural mechanism for some of the motor prob-
lems commonly seen in NF1.
The neurobiology of patients with NS has been studied

to a limited extent (often in the context of a predispo-
sition to cancer), and genotype-phenotype correlations
have rarely been reported. Brain structure in NS appears
grossly normal, but neurological abnormalities have been
reported in some cases. Chiari I malformations have
been noted in some cases of NS [37], whilst a boy with
NS and a mutation in RAF1 was reported to exhibit ex-
ternal hydrocephalus and abnormal cerebrovascular
pathology [38]. An adult female harbouring a KRAS mu-
tation followed over the course of several years displayed
epilepsy, and hippocampal sclerosis and atrophy [39];
neuroimaging and animal model work (see below) de-
monstrates that hippocampal pathology appears to be a

feature common to NF1 and other RASopathies. Individ-
uals with NS and a newly reported mutation in SHOC2 ex-
hibit a relative megalencephaly, enlarged subarachnoid
spaces, a relatively small posterior fossa, and a high rate of
cerebellar tonsillar ectopia [40].

Candidate molecular mechanisms underlying
increased rates of ADHD in TS
Neuropsychological differences between neurotypical
46,XX females and females with TS could potentially arise
due to one or more fundamental genetic mechanisms.
First, a plausible reason for increased ADHD rates in

TS stems from the fact that these individuals, like males,
are functionally hemizygous for some, or all, X-linked
genes. Hence, the effects of X-linked mutations or poly-
morphisms that elicit ADHD-related phenotypes will be
apparent, and will not be moderated by the effects of the
second X-linked allele. Candidate gene studies have pre-
viously implicated polymorphisms within the X-linked
MAOA and HTR2C genes in phenotypes associated with
ADHD [41, 42]; recent recognition that the X chromo-
some must also be incorporated in genomewide asso-
ciation studies together with the development of
statistical tools to perform such analyses (e.g. XWAS
[43]), is likely to drive the generation unbiased evidence
for association between multiple X-linked genetic va-
riants and ADHD-related phenotypes in the near future.
The second genetic mechanism that may explain why

ADHD rates are higher in TS than healthy control sub-
jects is X-linked gene dosage. The epigenetically me-
diated process of X-inactivation silences one of the two
X chromosomes within a female cell to ensure dosage
equivalence (and hence gross phenotypic equivalence) to
male cells where only one X chromosome is active [44].
However, this silencing process is not complete, and
~15–20% of human X-linked genes are thought to es-
cape X-inactivation to some extent, including both in
the pseudoautosomal regions and the X-specific portion
of the chromosome [45]; for this subset of genes, expres-
sion levels will be higher (though not necessarily double)
in female than male cells due to the fact that expression
proceeds from two X-linked alleles in females, but only
one in males. If reduced dosage for one or more of these
so-called ‘X-escapees’ confers ADHD risk, then we might
expect individuals with just one X-linked allele (i.e.
males and females with TS) to exhibit greater vulnerabi-
lity than 46,XX females. Work in animal models has
begun to identify X-escapees that might influence in-
creased ADHD risk in TS via gene dosage mechanisms
(see below). For TS subjects possessing one intact X
chromosome and a second X chromosome with a terminal
or interstitial chromosomal deletion, the second X
chromosome may be preferentially inactivated [46]; this
process may both skew the relative expression of X-linked
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alleles from the paternally and maternally inherited X chro-
mosomes, and subtly affect the expression of X-escapees.
The final genetic mechanism that may explain the ele-

vated ADHD rates in TS is the parental origin of the X
chromosome [47]. Briefly, there is limited, somewhat
contentious (e.g. [48]), evidence from human [46] and
mouse [49] studies that possessing a single maternally
inherited X chromosome (45,XM) results in poorer social
function, and a greater degree of behavioural inflexibi-
lity, than inheriting a single paternally inherited X
chromosome (45,XP). Neurotypical 46, XX females in-
herit one X chromosome from either parent, and there-
fore any deleterious effects of the maternally inherited X
chromosome may be compensated for by the presence
of the paternally inherited X chromosome. Impaired so-
cial function, aberrant behavioural inhibition and beha-
vioural inflexibility is commonly seen in individuals with
ADHD [50]. As a large proportion (~70%) of X-
monosomic women inherit their single X chromosome
maternally, we might expect the TS group as a whole to
be more severely affected with regard to these ADHD-
related brain and behavioural measures than 46,XX fe-
males. This ‘parent-of-origin’ idea is not supported by
data from the one, rather small, published study that has
explicitly tested whether rates of ADHD diagnoses in in-
dividuals with 45,XP and XM karyotypes differ (although
behavioural flexibility was not assayed in any depth) [8];
however, there is some evidence from TS that parent-of-
origin effects may influence aspects of cognition per-
turbed in ADHD [48, 51].
The genetic mechanisms above could potentially in-

fluence brain function directly. Alternatively, they could
exert effects on neurodevelopment and brain function
indirectly through affecting the development and func-
tion of other organs. TS is commonly associated with
impaired ovarian formation (and hence reduced levels of
systemic reproductive hormones); the condition is also
linked to abnormalities in levels of circulating growth
hormone and thyroid hormones [52]. An important
question is whether the ADHD-related symptoms and
cognitive deficits in TS, are influenced primarily by di-
rect genetic effects, primarily by indirect, hormonally
mediated effects, or by an equal contribution of the two
pathways. There are a number of lines of evidence which
suggest that the first option may be the most plausible.
For example, many TS cognitive deficits are maintained
throughout development despite considerable fluctua-
tions in levels of circulating hormones across the life-
course; moreover, cognitive deficits are not alleviated to
any significant extent by the administration of oestro-
gens, androgens or growth hormone (e.g. Freriks et al.,
2015 [53]), and women with premature ovarian failure
who exhibit similar hormonal profiles to women with TS
do not present with a similar constellation of cognitive

deficits [54]. However, some modulatory role for hor-
monal (and environmental) influences on cognition,
particularly during foetal development or early child-
hood, is likely.
Given the data above, which sex-linked genes may be

regarded as candidates for influencing attentional phe-
notypes in TS, and which neural circuitry may they in-
fluence? Y-linked genes that may be of particular
interest with respect to ADHD include the male-
determining gene SRY (which is expressed in dopami-
nergic neuron-rich brain regions and is duplicated in
cases of ADHD), and NLGN4Y and PCDH11Y, which
encode cell membrane molecules important in maintai-
ning synapse integrity and cell-cell interactions respec-
tively, and both of which have been implicated as
candidate genes for neurodevelopmental disorders [55].
In TS these mechanisms might come into play in indi-
viduals where mosaic Y-linked sequences inherited from
their father are present.
Deletion mapping strategies (whereby the phenotypes

of TS subjects possessing a variety of partial deletions
of the second X chromosome are assessed) have been
useful for identifying genomic regions that may poten-
tially underlie X-linked gene dosage effects on executive
function and social cognition. Zinn and colleagues have
shown that individuals in which a small portion of the
short of the X chromosome was missing (Xp22.3) con-
sistently demonstrate abnormal neurocognitive func-
tion, including across an assay of attention (TOVA) on
which subjects with ADHD are impaired [56]. Of the
31 genes within this interval, the authors suggested STS
and NLGN4X (the X-linked homologue of NLGN4X) as
candidate genes. STS escapes X-inactivation in both
humans and mouse [57] and consequently is more
highly expressed in foetal and adult female than male
brain (unpublished results). Recent cross-species
work has strengthened the evidence for this gene as
a mediator of attention. Specifically, X-monosomic
mice (which exhibit neither short stature nor gross
hormonal abnormalities) exhibit attentional deficits
that can be rescued by the presence of a small
chromosome housing Sts [58]; moreover, mice lac-
king the Sts gene, or mice in which the associated
steroid sulfatase enzyme is inhibited, show attentional
deficits and other phenotypes of relevance to ADHD
[42, 47, 59, 60]. In a demonstration of the power of
studying rare neurogenetic conditions to understand
the pathophysiology underlying more common idio-
pathic disorders, we, and others, have shown, on the
basis of work predicting steroid sulfatase involvement
in (in)attention from TS and related mouse models,
that polymorphisms within STS are associated with
the inattentive symptom count in boys diagnosed
with idiopathic ADHD [61, 62].
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Deletion mapping in TS has also revealed a small
dosage-sensitive locus at Xp11.3 that is linked to im-
paired emotion recognition and increased orbitofrontal
cortex grey matter and amygdala size [63]; follow-up
genetic association analyses have implicated a variant
within the EFHC2 gene in these phenotypes in both fe-
males with TS and healthy males [64, 65], although the
data from TS is somewhat controversial [66]. There is
some evidence that individuals with ADHD exhibit ab-
normal orbitofrontal cortex grey matter volumes, and
related deficits in emotion perception [67–70]; testing
for genetic association within EFHC2 and these pheno-
types within idiopathic ADHD therefore represents a
sensible future avenue for research. To date, no X-linked
genes whose expression is significantly influenced in a
parent-of-origin dependent manner have been identified
in human somatic tissues, including brain. Interestingly,
however, the closest human orthologue of the genomi-
cally imprinted maternally expressed mouse gene Xlr3b
identified in a mouse model of TS [49], FAM9B, is lo-
cated at Xp22.3 adjacent to the interval for TS neuro-
cognitive function indicated by deletion mapping. Whilst
FAM9B is apparently not expressed in the brain, it is
expressed in other reproductive tissues [71] and is asso-
ciated with levels of serum androgens in men [72]. In-
vestigating whether FAM9B activity may partially
explain the X-linked POE on behaviour seen in TS, and
assessing whether this gene may play a role in ADHD-
relevant phenotypes related to circulating androgens
[41] will also be a worthwhile avenue for further studies.
The bimodal peak in attention problems within a sam-

ple of participants with TS reported recently [13] is intri-
guing and could be explained in a number of ways. First,
the distinct sub-groups may have differed subtly in their
demographic characteristics (e.g. age, or socioeconomic
group) or with respect to their medication regimes, al-
though comparing the two subgroups on these measures
did not find significant differences (p > 0.5). Alterna-
tively, the two groups may have differed in this cognitive
domain as a function of their (epi)genotype. Theoreti-
cally, the bimodal distribution might have arisen due to
phenotypic differences between 45,XP and 45,XM sub-
jects, although, overall, and consistent with previous
data [8], the authors found no evidence for parent-of-
origin of the X chromosome influencing ADHD rates
within the TS sample. More plausibly, this particular
pattern of data may be most parsimoniously explained
by hemizygosity, with subjects possessing one or other
alleles of X-linked genes affecting attentional processes.
Given the converging evidence from human and mouse
studies for an attentional role for STS (and inherent ge-
netic polymorphisms) described above, we hypothesise
that the two groups may be distinguished by their geno-
type at this locus, or by systematic levels of metabolites

dependent upon enzyme function (e.g. dehydroepian-
drosterone, DHEA).
An alternative method to deletion mapping for identi-

fying candidate genes underlying ADHD-related pheno-
types in TS is to compare gene expression in case
samples with that of neurotypical controls. Comparing
tissue expression between the two groups is difficult for
a number of reasons including the unavailability of the
most pertinent tissue (i.e. brain), and obtaining TS sam-
ples from donors with consistent ages, karyotypes, hor-
monal profiles, and treatment histories. A comparison of
cell-free RNA levels from the amniotic fluid surrounding
TS or euploid female foetuses, which circumvents some
of the aforementioned problems, has hinted at dysregu-
lation of the hematologic/immune system in TS and has
highlighted a number of specific X-linked and autosomal
candidate genes for TS phenotypes [73]; of these, three
have previously been tentatively linked to idiopathic
ADHD by genetic association studies (FEN1/ELOVL6
[74], GSK3B [75] and BAIAP2 [76]) and as such may be
regarded as potential modulators of ADHD risk both
within TS and within the general population. A compari-
son of gene expression in induced pluripotent stem (iPS)
cells derived from individuals with TS or 46,XX indivi-
duals has revealed that X-monosomy results in extensive
effects on the whole transcriptome, with most impact
upon genes involved in central nervous system develop-
ment [77]; of the most highly differentially expressed
genes (>20-fold change), the two with the most rele-
vance to ADHD are DPP6 [78] and MYT1L [79]. Clearly,
gene expression differences in iPS cells may not provide
an accurate representation of gene expression differences
that occur in the developing and mature brains of TS
and 46,XX individuals, and, as such, future studies might
aim to compare the expression of differentiated neural
cells with a view to identifying more plausible candidates
for TS cognitive phenotypes.

Candidate cellular mechanisms underlying
increased rates of ADHD in RASopathies
Several converging lines of evidence have implicated
GABAergic dysfunction in NF1 cognitive pathology. A
seminal series of studies focussing on the hippocampus
showed that mice heterozygous for a null NF1 mutation ex-
hibited excessive Ras activity, enhanced ERK and synapsin I
phosphorylation and increased GABA-mediated inhibition,
and consequently specific deficits in long term potentiation
of potential relevance to learning deficits [80, 81]; the aber-
rant phenotypes could be partially rescued by administra-
tion of a GABA antagonist. More recent work has shown
that GABA-mediated inhibition in NF1-deficient mice may
influence working memory performance via effects on fron-
tostriatal circuitry, a result consistent with the observation
that NF1 patients exhibit hypoactivation of this system [82].
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Of particular relevance to this review, NF1-deficient
mice exhibit attentional impairments in a stimulus de-
tection task dependent upon prefrontal cortex function
[83]. The extent to which the attentional deficits seen in
these mice are a result of GABAergic dysfunction re-
mains to be formally tested e.g. via pharmacological ma-
nipulations. Consistent with the notion of a brain
region-specific GABAergic deficit influencing ADHD-
related phenotypes in NF1, work in humans has shown
that NF1 patients exhibit impaired impulse control, al-
terations in electroencephalographic (EEG) signatures of
basic sensory and visual processing [84], and reduced
GABA (but not glutamate) levels in the medial frontal
and occipital cortex [85]; only in the medial frontal cor-
tex were GABA levels correlated with impulse control,
and in the opposite direction in NF1 patients and con-
trols. Impairments in social cognitive function are fre-
quently seen in ADHD cases, as discussed above. Work
in heterozygous NF1 knockout mice in which the MAP
kinase pathway was over-activated in neurons of the
amygdala and frontal cortex, showed a selective social
learning deficit and disruption to GABA and glutamater-
gic neurotransmission [86]; this study further implicates
effects on excitatory and inhibitory neurotransmitter sys-
tems as being key to ADHD-related phenotypes in NF1.
Work in animal and cellular models have also shown

that disruption of the Ras signalling cascade has down-
stream effects on dopaminergic function that may par-
tially explain the cognitive deficits associated with NF1.
Most germane to the ‘attentional’ focus of this review, is
the observation that NF1-deficient mice exhibit a deficit
in non-selective and selective attentional function in the
absence of hyperactivity [87], a phenotype that is asso-
ciated with reduced striatal dopamine levels; both the
behavioural and neurochemical phenotypes could be
ameliorated by the administration of methylphenidate, a
dopamine reuptake inhibitor used therapeutically in
ADHD cases. Consistent with this, NF1-deficient mice
perform poorly on spatial and learning tasks that are
dependent upon dopaminergic function, and neural pro-
genitor cells from NF1 patients exhibit reduced dopa-
mine levels [88]. In terms of molecular pathways, the
altered gene expression profile exhibited in the hippo-
campus of heterozygous NF1 knockout mice has impli-
cated aberrant interactions between neurofibromin, the
amyloid precursor protein and the dopamine receptor
Drd3 as being important in NF1 psychopathology
[89, 90]. Finally, a recent study has shown that pan-
neuronal knockdown of NF1 in Drosophila is asso-
ciated with locomotor hyperactivity (an ADHD-like
phenotype) that could be ameliorated by the adminis-
tration of methylphenidate [91].
Brain and behavioural phenotypes in NF1 patients

may also be influenced by altered levels of circulating

glucocorticoids. It has recently been shown that dele-
tion of the NF1 gene in the adrenal cortex increases
circulating levels of stress hormones (corticosterone/
cortisol) in mouse models and patients [92]. In indi-
viduals with ADHD alone, basal cortisol levels tend
to be equivalent to those seen in non-affected indivi-
duals [93] and therefore increased basal stress hor-
mone levels are unlikely to explain the increased
propensity to ADHD in NF1. Existing research on the
genetics, cellular biology and animal models of NS
provide compelling evidence regarding PTPN11 effects
in the central nervous system. At the cellular level,
these studies show that Shp2, encoded by the PTPN11
gene, reduces myelination of axons [94] and is asso-
ciated with deficits in long-term potentiation (LTP) and
increased excitatory synaptic function in hippocampal
neurons [95]. In the mouse brain, altered Shp2 expres-
sion results in subtle increases in neuron cell density
and number, and decreases in astrocyte cell density and
number in the hippocampus and forebrain [96]. Beha-
viour in the Shp2-deficient mouse model of NS has
been described as inattentive/hyperactive [95, 97], with
cognitive deficits in memory and learning [95].

A common pathophysiology for ADHD risk in TS
and the RASopathies?
Given the overlap in clinical and neuropsychological
features between Turner syndrome and the RASopa-
thies (notably with regard to attention deficits/ADHD
risk, spatial deficits, motor problems and dyscalculia),
is there any evidence for a shared underlying patho-
physiology? There are some emerging data from clinical
and model studies suggesting that the phenotypes of
NF1-deficient individuals may be dependent upon gen-
der, e.g. female patients are more likely to require treat-
ment for visual decline than male patients, whilst only
male NF1 knockout mice appear to show spatial lear-
ning/memory deficits, increased Ras activity and dopa-
minergic abnormalities [98]. These data imply that the
Ras pathway and pathways mediated by sex-linked gene
products might somehow interact to modulate an indi-
vidual’s eventual phenotype. However, to date, there is
little information available on whether gender is a sig-
nificant factor in the manifestation of attentional prob-
lems and ADHD in NF1 and this is an avenue that may
be useful to explore in future work. Interestingly, indi-
viduals presenting with both NF1 and Turner syndrome
have been reported, highlighting the clinical similarities
between the two conditions and the possibility of a par-
tially overlapping molecular pathology [99].
NF1 deficient patients and/or rodents show subtly al-

tered CNS neuronal morphology including shorter neu-
rite lengths, smaller growth cone areas and attenuated
survival [87], altered dendritic spine number [100] and
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increased perfusion and density of microglia in the
amygdala [101]; these measures have yet to be formally
assessed in TS and associated models. Unlike in NF1-
deficient subjects, to date, there is little evidence for al-
tered neurochemistry in TS patients or the 39,XO
mouse [26, 102]. However, this dearth of information is
likely to be due to a lack of systematic investigations in
this area rather than a definite absence of karyotype-
dependent effects. Small, but significant, changes in
GABAergic receptor gene expression have been reported
in the 39,XO whole mouse brain [103], and so, poten-
tially, GABAergic system dysfunction may partially
underlie attention deficits in both NF1 and TS.
Further clues as to the shared molecular pathology

underlying ADHD phenotypes between TS and NF1
may come from a comparison of gene expression in the
two relevant mouse models (39,XO mouse and NF1 he-
terozygous knockout mouse), or cell lines from these
mutants (see above) or patients. A comparison of whole
brain gene expression in 40,XX and 39,XO mice re-
vealed only a very small number of significantly differen-
tially expressed genes [104] including the X-inactivation
escapees Eif2s3x, Utx and Ddx3x, none of which have
previously been implicated in ADHD. To reiterate, the
relevance of the 39,XO mouse model for understanding
the molecular neuropathology of TS is debatable given
the lack of X-escapees in mice relative to humans [27].
Gene expression studies in heterozygous NF1 knockout
mice have focussed on the hippocampus (largely because
of its key role in learning, memory and spatial pro-
cesses). These analyses have highlighted effects of the
mutation on the expression of genes encoding plasticity-
related synaptic proteins [105] and kinesins [90] but
do not identify Eif2s3x, Utx or Ddx3x as differentially
expressed genes. Hence, we may have failed to detect
true brain gene expression commonalities between TS
and NF1 models (perhaps due to using whole brain
or hippocampal tissue respectively), or there truly is
little overlap on this measure between the two
models. Addressing which of these two possibilities is
correct could be done through more relevant compa-
risons e.g. comparing gene expression in matched ro-
dent brain tissues, or in induced pluripotent stem cell
(iPSC)-derived neuronal cells from individuals affected
by one or other of the two conditions.
Given the current paucity of data regarding the neu-

roanatomy of NS patients, work in model systems will
be fundamental to understanding the neural correlates
of the cognitive and attentional deficits seen in this
group. Data from genetically engineered mouse models
and hippocampal slices harbouring equivalent Ptpn11
mutations to those seen in cases of NS, have revealed
abnormal myelination patterns [94], increased baseline
excitatory synaptic function and deficits in long-term

potentiation (LTP) and spatial learning [95]; the LTP and
cognitive deficits could be normalised by administration
of lovastatin, which reduces activation of the GTPase
Ras-extracellular signal-related kinase (Erk) pathway in
the brain. Currently, neither attentional function, nor
the neurochemical basis of the cognitive deficits, have
been assessed in these promising models, so it remains
to be seen whether the genetic mutation recapitulates
the ADHD phenotypes commonly observed in NS, and,
if so, whether targeted therapeutic options may alleviate
this. A priori, one might expect to see some similar
neural phenotypes in the Ptpn11 models and the NF1
knockout model and it will be interesting to see the ex-
tent to which these overlap. In contrast, one might also
expect to find differing neural phenotypes in these
models given the opposing effect of these mutations on
neurotransmitter phenotypes. Ptpn11 mutation increases
basal excitatory synaptic transmission in hippocampal
neurons and has a role in postsynaptic glutamatergic
neurons through enhanced trafficking of AMPA receptors
and effect on LTP dependent learning and memory [95].
NF1 mutation increases inhibitory synaptic transmission
in hippocampal neurons, and has a role in presynaptic
neurons through increased GABA release [80, 81].

Conclusions
Whilst we now know that ADHD rates are elevated in
Turner syndrome and the RASopathies, we still have
very little information on ADHD subtypes and co-
morbidities in these populations, about how ADHD-
related phenotypes vary with age in these conditions,
and about their underlying psychological, neural and
molecular substrates. Therefore, more detailed clinical,
neuropsychological and neuroanatomical phenotyping
across cases and appropriate neurotypical controls
across development is required; there also should be an
emphasis on measures of brain function (e.g. EEG,
fMRI) particularly during tasks taxing ADHD-related
constructs such as alerting, orienting and executive con-
trol [106], with a view to more accurately specifying the
neural systems that are particularly perturbed in TS and
RASopathies, and identifying the extent to which the
same systems are perturbed in these conditions and idio-
pathic ADHD. Studies into rare conditions are necessa-
rily hampered by low power; hence, it will be important,
perhaps through collaboration, to assess large patient
samples from diverse geographical regions, in order to
account for factors such as age and medication history,
and to stratify samples on the basis of genotype to
enable informative and robust genotype-phenotype cor-
relations to be drawn. Such studies will not only improve
our knowledge of the specific pathophysiological me-
chanisms underlying particular phenotypes and their
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amenability to treatment, but will be of importance for
genetic counselling.
The brains of patients with TS or a RASopathy cannot

be studied intimately in vivo. Hence, useful animal and
cellular models for these conditions have been, and will
continue to be, critically important for understanding
the basis of associated cognitive deficits. There are now
a number of excellent behavioural assays available for
mice that tax processes of relevance to ADHD, many of
which are conceptually and functionally analogous to
human tasks for maximal translational value [41, 107–
109]. Hence, the parallel assessment of brain structure,
and function at various levels (e.g. electrophysiological,
neurochemical via in vivo microdialysis, or imaging via
c-fos immunohistochemistry or fMRI) during perfor-
mance of such tasks, in TS and RASopathy models will
enable high resolution of the aberrant neural circuitry
underlying any cognitive phenotype; such predictions
may then be tested experimentally through techniques
such as optogenetics or DREADDs. Further work in
iPSCs originating from TS or RASopathy patient sam-
ples, or their neuronal derivatives, will also provide clues
as to molecular processes that may underlie ADHD-
related phenotypes, and that could be followed up fur-
ther in animal models and, ultimately, patients.
Studies explicitly designed to look for commonalities

and dissociations in abnormal brain structure or mo-
lecular dysfunction across conditions and models with
ADHD-like phenotypes may also be undertaken to iden-
tify and characterise pathways that may frequently be
disturbed in ADHD. This approach has recently been
taken with regard to neuroimaging phenotypes in 26
mouse models recapitulating features of autism spectrum
conditions (including the 39,XO mouse) [110], and could
feasibly be undertaken with existing rodent models for TS,
NF1 and NS.
New insights into the molecular mechanisms predis-

posing to ADHD in TS may soon come from genome-
wide genetic screens in idiopathic ADHD. To date,
genome-wide association studies, copy number variant
studies and exome/whole genome sequencing studies in
ADHD have been limited by low power, a particular
concern where the aetiology of the disorder is thought
to be multifactorial and due to a complex mix of com-
mon and rarer variants. Moreover, these studies have
traditionally neglected the X chromosome for a variety
of reasons. With more ADHD samples now available for
genotyping, a growing recognition that the X chromo-
some is influential in neurocognitive phenotypes, and
better statistical tools for dealing with X-linked data,
X-linked genes that are robustly implicated in idio-
pathic ADHD (and therefore that may play a key role
in ADHD risk within TS) may soon be identified.
Large-scale genome-wide studies in well-characterised

ADHD samples may also potentially implicate genes
involved in the Ras signalling cascade, including those
involved in NF1 and NS; through interrogation of the
clinical phenotypes associated with each variant, a
clearer picture of how the various gene mutations
may affect cognition and behaviour could be drawn.

Abbreviations
ADHD: Attention deficit hyperactivity disorder; CFC: Cardiofaciocutaneous
syndrome; CS: Costello syndrome; NF1: Neurofibromatosis type 1; NS: Noonan
syndrome; TS: Turner syndrome

Acknowledgements
None.

Funding
Work at Cardiff University was supported by the Medical Research Council
Centre for Neuropsychiatric Genetics and Genomics (MR/L010305/1).

Availability of data and materials
Not applicable.

Authors’ contributions
All authors contributed towards the drafting and editing of the manuscript.
All authors agreed to the final version of the manuscript being submitted for
publication.

Competing interests
The authors declare that they have no competing interests.

Consent for publication
Not applicable.

Ethics approval and consent to participate
Not applicable.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

Author details
1Center for Interdisciplinary Brain Sciences Research, Stanford University
School of Medicine, Stanford, USA. 2Department of Clinical Psychology, Palo
Alto University, Palo Alto, CA, USA. 3Medical Research Council Centre for
Neuropsychiatric Genetics and Genomics and Division of Psychological
Medicine and Clinical Neurosciences, School of Medicine, Cardiff University,
Cardiff, UK. 4School of Psychology, Cardiff University, Tower Building, 70, Park
Place, Cardiff CF10 3AT, UK. 5Neuroscience and Mental Health Research
Institute, Cardiff University, Cardiff, UK.

Received: 17 October 2016 Accepted: 18 May 2017

References
1. Association AP. DSM 5. 5th edn. Washington DC: American Psychiatric

Association; 2013.
2. Organization W. The ICD-10 classification of mental and behavioural

disorders: Diagnostic Criteria for Research. 1993.
3. Bloom B, Cohen R, Freeman G. Summary health statistics for U.S. children:

National Health Interview Survey, 2009. Vital Health Stat. 2010;247:1–82.
4. Tammimies K, Marshall CR, Walker S, Kaur G, Thiruvahindrapuram B, Lionel

AC, Yuen RK, Uddin M, Roberts W, Weksberg R, et al. Molecular Diagnostic
Yield of Chromosomal Microarray Analysis and Whole-Exome Sequencing in
Children With Autism Spectrum Disorder. JAMA. 2015;314:895–903.

5. Thapar A, Cooper M, Eyre O, Langley K. Practitioner Review: What have we
learnt about the causes of ADHD? J Child Psychol Psychiatry. 2016;54:3–16.

6. Gallo EF, Posner J. Moving towards causality in attention-deficit hyperactivity
disorder: Overview of neural and genetic mechanisms. Lancet Psychiatry.
2017;3:555–67.

Green et al. Journal of Neurodevelopmental Disorders  (2017) 9:25 Page 9 of 12



7. Neece CL, Baker BL, Crnic K, Blacher J. Examining the validity of ADHD as a
diagnosis for adolescents with Intellectual Disabilities: Clinical presentation. J
Abnorm Child Psychol. 2013;41:597–612.

8. Russell HF, Wallis D, Mazzocco MM, Moshang T, Zacka E, Zinn AR, Ross JL,
Muenke M. Increased Prevalence of ADHD in Turner Syndrome with No
Evidence of Imprinting Effects. J Pediatr Psychol. 2006;31:945–55.

9. Mautner V-F, Kluwe L, Thakker SD, Leark RA. Treatment of ADHD in
neurofibromatosis type 1. Dev Med Child Neurol. 2002;44:164–70.

10. Pierpont EI, Tworog‐Dube E, Roberts AE. Attention skills and executive
functioning in children with Noonan syndrome and their unaffected
siblings. Dev Med Child Neurol. 2015;57:385–92.

11. Hyman SL, Shores A, North KN. The nature and frequency of cognitive deficits
in children with neurofibromatosis type 1. Neurology. 2005;65:1037–44.

12. Garg S, Green J, Leadbitter K, Emsley R, Lehtonen A, Evans DG, Huson SM.
Neurofibromatosis type 1 and autism spectrum disorder. Pediatrics.
2013;132:e1642–8.

13. Green T, Shrestha SB, Chromik LC, Rutledge K, Pennington BF, Hong
DS, Reiss L. A. Elucidating X chromosome influences on Attention
Deficit Hyperactivity Disorder and executive function. J Psychiatr Res.
2015;68:217–25.

14. Payne JM, Hyman SL, Shores EA, North KN. Assessment of executive function
and attention in children with neurofibromatosis type 1: Relationships
between cognitive measures and real-world behavior. Child Neuropsychol.
2011;17:313–29.

15. Dennis EL, Thompson PM. Typical and atypical brain development: A review
of neuroimaging studies. Dialogues Clin Neurosci. 2013;15:359–84.

16. Green T, Chromik LC, Mazaika PK, Fierro K, Raman MM, Lazzeroni LC,
Hong DS, Reiss AL. Aberrant parietal cortex developmental trajectories
in girls with turner syndrome and related visual–spatial cognitive
development: A preliminary study. Am J Med Genet B Neuropsychiatr
Genet. 2014;165:531–40.

17. Brown WE, Kesler SR, Eliez S, Warsofsky IS, Haberecht M, Reiss AL. A
volumetric study of parietal lobe subregions in Turner syndrome. Dev
Med Child Neurol. 2004;46:607–9.

18. Raznahan A, Lee Y, Stidd R, Long R, Greenstein D, Clasen L, Addington A,
Gogtay N, Rapoport JL, Giedd JN. Longitudinally mapping the influence of
sex and androgen signaling on the dynamics of human cortical maturation
in adolescence. Proc Natl Acad Sci U S A. 2010;107:16988–93.

19. Holzapfel M, Barnea-Goraly N, Eckert MA, Kesler SR, Reiss AL. Selective
Alterations of White Matter Associated with Visuospatial and Sensorimotor
Dysfunction in Turner Syndrome. J Neurosci. 2006;26:7007–13.

20. Yamagata B, Barnea-Goraly N, Marzelli MJ, Park Y, Hong DD, Mimura M,
Reiss AL. White matter aberrations in prepubertal estrogen-naive girls with
monosomic Turner Syndrome. Cereb Cortex. 2012;22:2761–8.

21. Haberecht MF, Menon V, Warsofsky IS, White CD, Dyer‐Friedman J, Glover
GH, Neely EK, Reiss AL. Functional neuroanatomy of visuo‐spatial working
memory in turner syndrome. Hum Brain Mapp. 2001;14:96–107.

22. Hart SJ, Davenport ML, Hooper SR, Belger A. Visuospatial executive function
in Turner syndrome: Functional MRI and neurocognitive findings. Brain.
2006;129:1125–36.

23. Tamm L, Menon V, Reiss AL. Abnormal prefrontal cortex function during
response inhibition in turner syndrome: Functional magnetic resonance
imaging evidence. Biol Psychiatry. 2003;53:107–11.

24. Xie S, Yang J, Zhang Z, Zhao C, Bi Y, Zhao Q, Pan H, Gong G. The effects of
the X Chromosome on intrinsic functional connectivity in the human brain:
Evidence from Turner Syndrome Patients. Cereb Cortex. 2017;27:474–84.

25. Raznahan A, Lue Y, Probst F, Greenstein D, Giedd J, Wang C, Lerch J,
Swerdloff R. Triangulating the sexually dimorphic brain through high-
resolution neuroimaging of murine sex chromosome aneuploidies. Brain
Struct Funct. 2015;3581:220:3581-93.

26. Lynn PM, Davies W. The 39, XO mouse as a model for the neurobiology of
Turner syndrome and sex-biased neuropsychiatric disorders. Behav Brain
Res. 2007;179:173–82.

27. Davies W. Using mouse models to investigate sex-linked genetic effects on
brain, behaviour and vulnerability to neuropsychiatric disorders. Brain Res
Bull. 2013;92:12–20.

28. Billiet T, Madler B, D’Arco F, Peeters R, Deprez S, Plasschaert E, Leemans A, Zhang
H, den Bergh BV, Vandenbulcke M, et al. Characterizing the microstructural
basis of “unidentified bright objects” in neurofibromatosis type 1: A combined
in vivo multicomponent T2 relaxation and multi-shell diffusion MRI analysis.
Neuroimage Clin. 2014;4:649–58.

29. Payne JM, Pickering T, Porter M, Oates EC, Walia N, Prelog K, North KN.
Longitudinal assessment of cognition and T2-hyperintensities in NF1:
An 18-year study. Am J Med Genet. 2014;164a:661–5.

30. Payne JM, Moharir MD, Webster R, North KN. Brain structure and function in
neurofibromatosis type 1: Current concepts and future directions. J Neurol
Neurosurg Psychiatry. 2010;81:304–9.

31. Margariti PN, Blekas K, Katzioti FG, Zikou AK, Tzoufi M, Argyropoulou
MI. Magnetization transfer ratio and volumetric analysis of the brain in
macrocephalic patients with neurofibromatosis type 1. Eur Radiol.
2007;17:433–8.

32. Huijbregts SC, Loitfelder M, Rombouts SA, Swaab H, Verbist BM, Arkink EB, Van
Buchem MA, Veer IM. Cerebral volumetric abnormalities in Neurofibromatosis
type 1: associations with parent ratings of social and attention problems,
executive dysfunction, and autistic mannerisms. J Neurodev Disord. 2015;7:32.

33. Karlsgodt KJ, Rosser T, Lutkenhoff ES, Cannon TD, Silva A, Bearden CE.
Alterations in White Matter Microstructure in Neurofibromatosis-1. PLoS
One. 2012;7:e47854.

34. Loitfelder M, Huijbregts SCJ, Veer IM, Swaab HS, Van Buchem MA, Schmidt
R, Rombouts SA. Functional connectivity changes and executive and social
problems in neurofibromatosis type I. Brain Connect. 2015;5:312–20.

35. Tomson SN, Schreiner MJ, Narayan M, Rosser T, Enrique N, Silva AJ,
Allen GI, Bookheimer SY, Bearden CE. Resting state functional MRI
reveals abnormal network connectivity in neurofibromatosis 1. Hum
Brain Mapp. 2015;36:4566–81.

36. Sanchez-Ortiz E, Cho W, Nazarenko I, Mo W, Chen J, Parada LF. NF1
regulation of RAS/ERK signaling is required for appropriate granule neuron
progenitor expansion and migration in cerebellar development. Genes Dev.
2014;28:2407–20.

37. Keh YS, Abernethy L, Pettorini B. Association between Noonan syndrome and
Chiari I malformation: A case-based update. Childs Nerv Syst. 2013;29:749–52.

38. Zarate YA, Lichty AW, Champion KJ, Clarkson LK, Holden KR, Matheus MG.
Unique cerebrovascular znomalies in Noonan Syndrome with RAF1
mutation. J Child Neurol. 2014;29:13–7.

39. Søvik O, Schubert S, Houge G, Steine SJ, Norgård G, Engelsen B, Njølstad PR,
Shannon K, Molven A. De novo HRAS and KRAS mutations in two siblings
with short stature and neuro-cardio-facio-cutaneous features. J Med Genet.
2007;44:e84.

40. Gripp KW, Zand DJ, Demmer L, Anderson CE, Dobyns WB, Zackai EH,
Denenberg E, Jenny K, Stabley DL, Sol-Church K. Expanding the SHOC2
mutation associated phenotype of Noonan syndrome with loose anagen
hair: structural brain anomalies and myelofibrosis. Am J Med Genet.
2013;161a:2420–30.

41. Davies W. Sex differences in attention Deficit Hyperactivity Disorder: Candidate
genetic and endocrine mechanisms. Front Neuroendocrinol. 2014;35:331–46.

42. Trent S, Davies W. The influence of sex-linked genetic mechanisms on
attention and impulsivity. Biol Psychol. 2012;89:1–13.

43. Gao F, Chang D, Biddanda A, Ma L, Guo Y, Zhou Z, Keinan A. XWAS: A
Software Toolset for Genetic Data Analysis and Association Studies of the X
Chromosome. J Hered. 2015;106:666–71.

44. Lyon MF. X-chromosome inactivation. Curr Biol. 1999;9:R235–7.
45. Carrel L, Willard HF. X-inactivation profile reveals extensive variability in

X-linked gene expression in females. Nature. 2005;434:400–4.
46. Skuse DH, James RS, Bishop DVM, Coppin B, Dalton P, Aamodt-Leeper G,

Bavarese-Hamilton M, Creswell C, McGurk R, Jacobs PA. Evidence from
Turner’s syndrome of an imprinted X-linked locus affecting cognitive
function. Nature. 1997;387:705–8.

47. Davies W, Humby T, Kong W, Otter T, Burgoyne PS, Wilkinson LS. Converging
pharmacological and genetic evidence indicates a role for steroid sulfatase in
attention. Biol Psychiatry. 2009;66:360–7.

48. Lepage JF, Hong DS, Hallmayer J, Reiss AL. Genomic imprinting effects on
cognitive and social abilities in prepubertal girls with Turner syndrome. J
Clin Endocrinol Metab. 2012;97:E460–4.

49. Davies W, Isles A, Smith R, Karunadasa D, Burrmann D, Humby T, Ojarikre O,
Biggin C, Skuse D, Burgoyne P, Wilkinson L. Xlr3b is a new imprinted
candidate for X-linked parent-of-origin effects on cognitive function in
mice. Nat Genet. 2005;37:625–9.

50. Aguiar A, Eubig PA, Schantz SL. Attention deficit/hyperactivity disorder: A
focused overview for children’s environmental health researchers. Environ
Health Perspect. 2010;118:1646–53.

51. Loesch DZ, Bui QM, Kelso W, Huggins RM, Slater H, Warne G, Bergman PB,
Rodda C, Mitchell RJ, Prior M. Effect of Turner’s syndrome and X-linked

Green et al. Journal of Neurodevelopmental Disorders  (2017) 9:25 Page 10 of 12



imprinting on cognitive status: analysis based on pedigree data. Brain Dev.
2005;27:494–503.

52. Hjerrild BE, Mortensen KH, Gravholt CH. Turner syndrome and clinical
treatment. Br Med Bull. 2008;86:77–93.

53. Freriks K, Verhaak CM, Sas TC, Menke LA, Wit JM, Otten BJ, de Muinck
Keizer-Schrama SM, Smeets DF, Netea-Maier RT, Hermus AR, et al. Long-
term effects of oxandrolone treatment in childhood on neurocognition,
quality of life and social-emotional functioning in young adults with Turner
syndrome. Horm Behav. 2015;69:59–67.

54. Ross JL, Stefanatos GA, Kushner H, Bondy C, Nelson L, Zinn A, Roeltgen D.
The effect of genetic differences and ovarian failure: Intact cognitive
function in adult women with premature ovarian failure versus Turner
syndrome. J Clin Endocrinol Metab. 2004;89:1817–22.

55. Kopsida E, Stergiakouli E, Lynn PM, Wilkinson LS, Davies W. The Role of the
Y Chromosome in Brain Function. Open Neuroendocrinol J. 2009;2:20–30.

56. Zinn AR, Roeltgen D, Stefanatos G, Ramos P, Elder FF, Kushner H, Kowal K,
Ross JL. A Turner syndrome neurocognitive phenotype maps to Xp22.3.
Behav Brain Funct. 2007;3:24.

57. Berletch JB, Yang F, Xu J, Carrel L, Disteche CM. Genes that escape from X
inactivation. Hum Genet. 2011;130:237–45.

58. Davies W, Humby T, Isles AR, Burgoyne PS, Wilkinson LS. X-monosomy
effects on visuospatial attention in mice: a candidate gene and implications
for Turner syndrome and attention deficit hyperactivity disorder. Biol
Psychiatry. 2007;61:1351–60.

59. Trent S, Dean R, Veit B, Cassano T, Bedse G, Ojarikre OA, Humby T, Davies W.
Biological mechanisms associated with increased perseveration and
hyperactivity in a genetic mouse model of neurodevelopmental disorder.
Psychoneuroendocrinology. 2013;38:1370–80.

60. Trent S, Dennehy A, Richardson H, Ojarikre OA, Burgoyne PS, Humby T,
Davies W. Steroid sulfatase-deficient mice exhibit endophenotypes relevant
to attention deficit hyperactivity disorder. Psychoneuroendocrinology.
2012;37:221–9.

61. Brookes KJ, Hawi Z, Kirley A, Barry E, Gill M, Kent L. Association of the steroid
sulfatase (STS) gene with attention deficit hyperactivity disorder. Am J Med
Genet. 2008;147B:1531–5.

62. Stergiakouli E, Langley K, Williams H, Walters J, Williams NM, Suren S,
Giegling I, Wilkinson LS, Owen MJ, O’Donovan MC, et al. Steroid sulfatase is
a potential modifier of cognition in attention deficit hyperactivity disorder.
Genes Brain Behav. 2011;10:334–44.

63. Good CD, Lawrence K, Thomas NS, Price CJ, Ashburner J, Friston KJ,
Frackowiak RSJ, Oreland L, Skuse DH. Dosage-sensitive X-linked locus
influences the development of amygdala and orbitofrontal cortex, and fear
recognition in humans. Brain. 2003;126:2431–46.

64. Startin CM, Fiorentini C, de Haan M, Skuse DH. Variation in the X-linked
EFHC2 gene is associated with social cognitive abilities in males. PLoS One.
2015;10:e0131604.

65. Weiss LA, Purcell S, Waggoner S, Lawrence K, Spektor D, Daly MJ, Sklar P,
Skuse D. Identification of EFHC2 as a quantitative trait locus for fear
recognition in Turner syndrome. Hum Mol Genet. 2007;16:107–13.

66. Zinn AR, Kushner H, Ross JL. EFHC2 SNP rs7055196 is not associated with fear
recognition in 45, X Turner syndrome. Am J Med Genet. 2008;147B:507–9.

67. Aspan N, Bozsik C, Gadoros J, Nagy P, Inantsy-Pap J, Vida P, Halasz J.
Emotion recognition pattern in adolescent boys with Attention-Deficit/
Hyperactivity Disorder. BioMed Res Int. 2014;4:1–8.

68. He N, Li F, Li Y, Guo L, Chen L, Huang X, Lui S, Gong Q. Neuroanatomical
deficits correlate with executive dysfunction in boys with attention deficit
hyperactivity disorder. Neurosci Lett. 2015;600:45–9.

69. Seidman LJ, Biederman J, Liang L, Valera EM, Monuteaux MC, Brown A,
Kaiser J, Spencer T, Faraone SV, Makris N. Gray matter alterations in adults
with attention-deficit/hyperactivity disorder identified by voxel based
morphometry. Biol Psychiatry. 2011;69:857–66.

70. Semrud-Clikeman M, Pliszka SR, Bledsoe J, Lancaster J. Volumetric MRI
differences in treatment naive and chronically treated adolescents with
ADHD-combined type. J Atten Disord. 2014;18:511–20.

71. Martinez-Garay I, Jablonka S, Sutajova M, Steuernagel P, Gal A, Katsche K. A
new gene family (FAM9) of low-copy repeats in Xp22.3 expressed
exclusively in testis: Implications for recombinations in this region.
Genomics. 2002;80:259–67.

72. Ohlsson C, Wallaschofski H, Lunetta KL, Stolk L, Perry JR, Koster A, Petersen
AK, Eriksson J, Lehtimaki T, Huhtaniemi IT, et al. Genetic determinants of
serum testosterone concentrations in men. PLoS Genet. 2011;7:e1002313.

73. Massingham LJ, Johnson KL, Scholl TM, Slonim DK, Wick HC, Bianchi DW.
Amniotic fluid RNA gene expression profiling provides insights into the
phenotype of Turner syndrome. Hum Genet. 2014;133:1075–82.

74. Mick E, Todorov A, Smalley S, Hu X, Loo S, Todd RD, Biederman J, Byrne D,
Dechairo B, Guiney A, et al. Family-based genome-wide association scan of
attention-deficit/hyperactivity disorder. J Am Acad Child Adolesc Psychiatry.
2010;49:898–905.e893.

75. Shim SH, Hwangbo Y, Kwon YJ, Lee HY, Kim JH, Yoon HK, Hwang JA,
Kim YK. Association between glycogen synthase kinase-3beta gene
polymorphisms and attention deficit hyperactivity disorder in Korean
children: A preliminary study. Prog Neuropsychopharmacol Bio Psychiatry.
2012;39:57–61.

76. Ribases M, Bosch R, Hervas A, Ramos-Quiroga JA, Sanchez-Mora C, Bielsa A,
Gastaminza X, Guijarro-Domingo S, Nogueira M, Gomez-Barros N, et al.
Case-control study of six genes asymmetrically expressed in the two
cerebral hemispheres: association of BAIAP2 with attention-deficit/
hyperactivity disorder. Biol Psychiatry. 2009;66:926–34.

77. Zhang R, Hao L, Wang L, Chen M, Li W, Li R, Yu J, Xiao J, Wu J. Gene
expression analysis of induced pluripotent stem cells from aneuploid
chromosomal syndromes. BMC Genomics. 2013;14 Suppl 5:S8.

78. Elia J, Sackett J, Turner T, Schardt M, Tang SC, Kurtz N, Dunfey M, McFarlane
NA, Susi A, Danish D, et al. Attention-deficit/hyperactivity disorder
genomics: Update for clinicians. Curr Psychiatry Rep. 2012;14:579–89.

79. Lesch KP, Timmesfeld N, Renner TJ, Halperin R, Roser C, Nguyen TT, Craig
DW, Romanos J, Heine M, Meyer J, et al. Molecular genetics of adult ADHD:
Converging evidence from genome-wide association and extended
pedigree linkage studies. J Neural Transm. 2008;115:1573–85.

80. Costa RM, Federov NB, Kogan JH, Murphy GG, Stern J, Ohno M, Kucherlapati
R, Jacks T, Silva AJ. Mechanism for the learning deficits in a mouse model of
neurofibromatosis type 1. Nature. 2002;415:526–30.

81. Cui Y, Costa RM, Murphy GG, Elgersma Y, Zhu Y, Gutmann DH, Parada LF,
Mody I, Silva AJ. Neurofibromin regulation of ERK signaling modulates
GABA release and learning. Cell. 2008;135:549–60.

82. Shilyansky C, Karlsgodt KH, Cummings DM, Sidiropoulou K, Hardt M, James
AS, Ehninger D, Bearden CE, Poirazi P, Jentsch JD, et al. Neurofibromin
regulates corticostriatal inhibitory networks during working memory
performance. Proc Natl Acad Sci U S A. 2010;107:13141–6.

83. Li W, Cui Y, Kushner SA, Brown RA, Jentsch JD, Frankland PW, Cannon TD,
Silva AJ. The HMG-CoA reductase inhibitor lovastatin reverses the learning
and attention deficits in a mouse model of neurofibromatosis type 1. Curr
Biol. 2005;15:1961–7.

84. Ribeiro MJ, d’Almeida OC, Ramos F, Saraiva J, Silva ED, Castelo-Branco M.
Abnormal late visual responses and alpha oscillations in neurofibromatosis
type 1: A link to visual and attention deficits. J Neurodev Disord. 2014;6:4.

85. Ribeiro MJ, Violante IR, Bernardino I, Edden RA, Castelo-Branco M. Abnormal
relationship between GABA, neurophysiology and impulsive behavior in
neurofibromatosis type 1. Cortex. 2015;64:194–208.

86. Molosh AI, Johnson PL, Spence JP, Arendt D, Federici LM, Bernabe C, Janasik
SP, Segu ZM, Khanna R, Goswami C, et al. Social learning and amygdala
disruptions in Nf1 mice are rescued by blocking p21-activated kinase. Nat
Neurosci. 2014;17:1583–90.

87. Brown JA, Emnett RJ, White CR, Yuede CM, Conyers SB, O’Malley KL,
Wozniak DF, Gutmann DH. Reduced striatal dopamine underlies the
attention system dysfunction in neurofibromatosis-1 mutant mice. Hum
Mol Genet. 2010;19:4515–28.

88. Anastasaki C, Woo AS, Messiaen LM, Gutmann DH. Elucidating the impact
of neurofibromatosis-1 germline mutations on neurofibromin function
and dopamine-based learning. Hum Mol Genet. 2015;24:3518–28.

89. D’Amico AG, Castorina A, Leggio GM, Drago F, D’Agata V. Hippocampal
neurofibromin and amyloid precursor protein expression in dopamine D3
receptor knock-out mice following passive avoidance conditioning.
Neurochem Res. 2013;38:564–72.

90. Donarum EA, Halperin RF, Stephan DA, Narayanan V. Cognitive dysfunction
in NFI knock-out mice may result from altered vesicular trafficking of APP/
DRD3 complex. BMC Neurosci. 2006;7:22.

91. van der Voet M, Harich B, Franke B, Schenck A. ADHD-associated dopamine
transporter, latrophilin and neurofibromin share a dopamine-related
locomotor signature in Drosophila. Mol Psychiatry. 2016;21:565–73.

92. Kobus K, Hartl D, Ott CE, Osswald M, Huebner A, von der Hagen M, Emmerich D,
Kuhnisch J, Morreau H, Hes FJ, et al. Double NF1 inactivation affects adrenocortical
function in NF1Prx1 mice and a human patient. PLoS One. 2015;10:e0119030.

Green et al. Journal of Neurodevelopmental Disorders  (2017) 9:25 Page 11 of 12



93. Fairchild G. Hypothalamic-pituitary-adrenocortical axis function in attention-
deficit hyperactivity disorder. Curr Top Behav Neurosci. 2012;9:93–111.

94. Ehrman LA, Nardini D, Ehrman S, Rizvi TA, Gulick J, Krenz M, Dasgupta B,
Robbins J, Ratner N, Nakafuku M, Waclaw RR. The protein tyrosine
phosphatase Shp2 is required for the generation of oligodendrocyte
progenitor cells and myelination in the mouse telencephalon. J
Neurosci. 2014;34:3767–78.

95. Lee YS, Ehninger D, Zhou M, Oh JY, Kang M, Kwak C, Ryu HH, Butz D, Araki
T, Cai Y, et al. Mechanism and treatment for learning and memory deficits
in mouse models of Noonan syndrome. Nat Neurosci. 2014;17:1736–43.

96. Gauthier AS, Furstoss O, Araki T, Chan R, Neel BG, Kaplan DR, Miller FD.
Control of CNS cell-fate decisions by SHP-2 and its dysregulation in
Noonan syndrome. Neuron. 2007;54:245–62.

97. Kusakari S, Saitow F, Ago Y, Shibasaki K, Sato-Hashimoto M, Matsuzaki Y,
Kotani T, Murata Y, Hirai H, Matsuda T, et al. Shp2 in forebrain neurons
regulates synaptic plasticity, locomotion, and memory formation in mice.
Mol Cell Biol. 2015;35:1557–72.

98. Diggs-Andrews KA, Brown JA, Gianino SM, Rubin JB, Wozniak DF, Gutmann
DH. Sex Is a major determinant of neuronal dysfunction in
neurofibromatosis type 1. Ann Neurol. 2014;75:309–16.

99. Schorry EK, Lovell AM, Milatovich A, Saal HM. Ullrich-Turner syndrome and
neurofibromatosis-1. Am J Med Genet. 1996;66:423–5.

100. Oliveira AF, Yasuda R. Neurofibromin Is the Major Ras Inactivator in
Dendritic Spines. J Neurosci. 2014;34:776–83.

101. Apostolova I, Niedzielska D, Derlin T, Koziolek EJ, Amthauer H, Salmen B,
Pahnke J, Brenner W, Mautner VF, Buchert R. Perfusion single photon
emission computed tomography in a mouse model of neurofibromatosis
type 1: towards a biomarker of neurologic deficits. J Cereb Blood Flow
Metab. 2015;35:1304–12.

102. Davies W. Evidence suggesting a role for X-linked imprinted gene
functioning on brain and behaviour in mice: A phenotypic investigation, Ph.
D thesis, University of Cambridge. 2003.

103. Isles AR, Davies W, Burrmann D, Burgoyne PS, Wilkinson LS. Effects on fear
reactivity in XO mice are due to haploinsufficiency of a non-PAR X gene:
implications for emotional function in Turner’s syndrome. Hum Mol Genet.
2004;13:1849–55.

104. Lopes AM, Burgoyne PS, Ojarikre A, Bauer J, Sargent CA, Amorim A, Affara
NA. Transcriptional changes in response to X chromosome dosage in the
mouse: implications for X inactivation and the molecular basis of Turner
Syndrome. BMC Genomics. 2010;11:82.

105. Park CS, Zhong L, Tang SJ. Aberrant expression of synaptic plasticity-related
genes in the NF1+/- mouse hippocampus. J Neurosci Res. 2009;87:3107–19.

106. Posner MI. Imaging attention networks. Neuroimage. 2012;61:450–6.
107. Humby T, Eddy JB, Good MA, Reichelt AC, Wilkinson LS. A novel translational

assay of response inhibition and impulsivity: effects of prefrontal cortex
lesions, drugs used in ADHD, and serotonin 2C receptor antagonism.
Neuropsychopharmacology. 2013;38:2150–9.

108. Humby T, Laird FM, Davies W, Wilkinson LS. Visuospatial attentional
functioning in mice: interactions between cholinergic manipulations
and genotype. Eur J Neurosci. 1999;11:2813–23.

109. Romberg C, Bussey TJ, Saksida LM. Paying more attention to attention:
towards more comprehensive cognitive translation using mouse models
of Alzheimer’s disease. Brain Res Bull. 2013;92:49–55.

110. Ellegood J, Anagnostou E, Babineau BA, Crawley JN, Lin L, Genestine M,
DiCicco-Bloom E, Lai JK, Foster JA, Penagarikano O, et al. Clustering autism:
Using neuroanatomical differences in 26 mouse models to gain insight into
the heterogeneity. Mol Psychiatry. 2015;20:118–1125.

111. Aoki Y, Nihori T, Inoue S, Matsubara Y. Recent advances in RASopathies. J
Hum Genet. 2016;61:33–9.

112. Yap YS, McPherson JR, Ong CK, Rozen SG, Teh BT, Lee ASG, Callen DF. The
NF1 gene revisited- from bench to bedside. Oncotarget. 2014;5:5873–92.

113. Helfferich J, Nijmeijer R, Brouwer OF, Boon M, Fock A, Hoving EW, Meijer L,
den Dunnen WF, de Bont ESJM. Neurofibromatosis type 1 associated low
grade gliomas: A comparison with sporadic low grade gliomas. Crit Rev
Oncol Hematol. 2016;104:30–41.

114. Chacko EM, Rapaport R. Short stature and its treatment in Turner and
Noonan syndromes. Curr Op Endocrinol Diabetes Obes. 2012;19:40–6.

115. Bhambhani V, Muenke M. Noonan Syndrome. Am Fam Physician. 2014;89:37–43.
116. Bondy CA, Group TTSCS. Care of Girls and Women with Turner Syndrome: A

Guideline of the Turner Syndrome Study Group. J Clin Endocrinol Metab.
2007;92:10–25.

117. Pandit B, Sarkozy A, Pennacchio LA, Carta C, Oishi K, Martinelli S, Pogna EA,
Schackwitz W, Ustaszewska A, Landstrom A, Bos JM. Gain-of-function RAF1
mutations cause Noonan and LEOPARD syndromes with hypertrophic
cardiomyopathy. Nat Genet. 2007;39(8):1007–12.

118. Carta C, Pantaleoni F, Bocchinfuso G, Stella L, Vasta I, Sarkozy A, Digilio C,
Palleschi A, Pizzuti A, Grammatico P, Zampino G. Germline missense
mutations affecting KRAS isoform B are associated with a severe Noonan
syndrome phenotype. Am J Hum Genet. 2006;79(1):129–35.

119. Lee DA, Portnoy S, Hill P, Gillberg C, Patton MA. Psychological profile of
children with Noonan syndrome. Dev Med Child Neurol. 2005;47(1):35–8.

120. Pierpont EI, Pierpont ME, Mendelsohn NJ, Roberts AE, Tworog‐Dube E,
Seidenberg MS. Genotype differences in cognitive functioning in Noonan
syndrome. Genes Brain Behav. 2009;8(3):275–82.

121. Zinn AR, Page DC, Fisher EM. Turner syndrome: the case of the missing sex
chromosome. Trends Genet. 1993;9(3):90–3.

•  We accept pre-submission inquiries 

•  Our selector tool helps you to find the most relevant journal

•  We provide round the clock customer support 

•  Convenient online submission

•  Thorough peer review

•  Inclusion in PubMed and all major indexing services 

•  Maximum visibility for your research

Submit your manuscript at
www.biomedcentral.com/submit

Submit your next manuscript to BioMed Central 
and we will help you at every step:

Green et al. Journal of Neurodevelopmental Disorders  (2017) 9:25 Page 12 of 12


	Abstract
	Background
	Main body
	Conclusion

	Background
	ADHD-related behavioural and cognitive phenotypes in TS, NF1 and NS
	Brain phenotype in TS, NF1 and NS: clinical and animal model evidence
	Candidate molecular mechanisms underlying increased rates of ADHD in TS
	Candidate cellular mechanisms underlying increased rates of ADHD in RASopathies
	A common pathophysiology for ADHD risk in TS and the RASopathies?
	Conclusions
	Abbreviations
	Acknowledgements
	Funding
	Availability of data and materials
	Authors’ contributions
	Competing interests
	Consent for publication
	Ethics approval and consent to participate
	Publisher’s Note
	Author details
	References

