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Abstract

Background: Language delay is extremely common in children with autism spectrum disorder (ASD), yet it is
unclear whether measurable variation in early language is associated with genetic liability for ASD. Assessment of
language development in unaffected siblings of children with ASD can inform whether decreased early language
ability aggregates with inherited risk for ASD and serves as an ASD endophenotype.

Methods: We implemented two approaches: (1) a meta-analysis of studies comparing language delay, a categorical
indicator of language function, and language scores, a continuous metric, in unaffected toddlers at high and low
familial risk for ASD, and (2) a parallel analysis of 350 unaffected 24-month-olds in the Infant Brain Imaging Study
(IBIS), a prospective study of infants at high and low familial risk for ASD. An advantage of the former was its detection
of group differences from pooled data across unique samples; an advantage of the latter was its sensitivity in
quantifying early manifestations of language delay while accounting for covariates within a single large sample.

Results: Meta-analysis showed that high-risk siblings without ASD (HR-noASD) were three to four times more likely to
exhibit language delay versus low-risk siblings without ASD (LR-noASD) and had lower mean receptive and expressive
language scores. Analyses of IBIS data corroborated that language delay, specifically receptive language delay, was
more frequent in the HR-noASD (n = 235) versus LR-noASD group (n = 115). IBIS language scores were continuously
and unimodally distributed, with a pathological shift towards decreased language function in HR-noASD siblings. The
elevated inherited risk for ASD was associated with lower receptive and expressive language scores when controlling
for sociodemographic factors. For receptive but not expressive language, the effect of risk group remained significant
even when controlling for nonverbal cognition.

Conclusions: Greater frequency of language delay and a lower distribution of language scores in high-risk, unaffected
toddler-aged siblings support decreased early language ability as an endophenotype for ASD, with a more pronounced
effect for receptive versus expressive language. Further characterization of language development is warranted to refine
genetic investigations of ASD and to elucidate factors influencing the progression of core autistic traits and related
symptoms.
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Background
A major challenge in elucidating the biology underlying
autism spectrum disorder (ASD) is its genetic hetero-
geneity. Endophenotypes, heritable characteristics which
share genetic liability with a disorder and which are
measurable regardless of a disorder’s state or stage (i.e.,
state-independent) [1, 2], are therefore especially inform-
ative for resolving the complex, polygenic genetic architec-
ture of ASD. By definition, endophenotypes demonstrate
several criteria involving inheritance among family mem-
bers with and without the disorder. These criteria include
co-segregating, or being inherited more commonly, in
affected versus unaffected family members and aggregat-
ing, or occurring with increased frequency, in unaffected
family members versus the general population, which is at
lower genetic risk [1, 2]. The occurrence of these familial
patterns in the context of a heritable trait substantiates the
relationship between an endophenotype and genetic factors
for a given disorder. Because endophenotypes can be
inferred to reflect causal pathways of a disorder and can be
reliably measured in individuals with and without the
disorder [1, 2], they enhance the sensitivity to determine
contributory genes and, by extension, the underlying biology.
The common co-occurrence of ASD and persistent

language impairments [3], which may include deficits in
aspects of structural language, such as vocabulary and
grammar, as well as pragmatics, the appropriate use of
language, has prompted the long-standing question of
whether language deficits represent an endophenotype of
ASD [4, 5]. Like ASD, language disorders are heritable
[6–9], with evidence of genetic influence from early
in development [10, 11]. Further, as expected for an
endophenotype, both autistic symptoms and language abil-
ity appear to behave as quantitative traits which are herit-
able across a range of competency encompassing
unimpaired and impaired individuals [9, 12–15]. Multiple
family studies have investigated the potential role of lan-
guage function as an ASD endophenotype by examining
whether language impairment occurs with increased fre-
quency in families with a history of ASD. Although several
of these studies have reported that unaffected family mem-
bers of individuals with ASD show more language impair-
ment than expected for the general population [16–25],
others have failed to find a difference from expected rates
in a control population [26–29]. Conversely, other groups
have found an increased prevalence of ASD in family mem-
bers of individuals with a specific language impairment
(SLI) [30, 31], but again, this finding has not been universal
[27, 32]. Interpretation of the literature is complicated by
several factors limiting the comparability across studies, in-
cluding differing diagnostic criteria for language impair-
ment (e.g., [26] versus [22]); small sample sizes [23, 29];
broad participant age ranges [33], which may mask devel-
opmentally sensitive manifestations of language function;

and lack of a control group [24] or standardized language
assessment [21, 25]. Given this inconsistency, the field has
been challenged to arrive at a consensus regarding whether
language function operates as an ASD endophenotype.
Related work examining quantitative relationships

between autistic traits and language function generally
supports overlapping genetic factors, in keeping with a
language-related ASD endophenotype. For example, a
recent general population twin study found shared genetic
influences for early childhood language scores at age 2 years
and quantitative measures of autistic traits at school age
[34]. In a study measuring autistic traits in unaffected sib-
lings of individuals with ASD [35], higher levels of autistic
traits were observed in siblings with a history of language
delay, again supporting overlapping genetic influences for
ASD and language delay, as well as an amplification of
ASD risk with a co-occurring history of language delay.
Multiple genetic studies have identified genes, such as
contactin-associated protein-like 2 (CNTNAP2) [36–38],
and genetic loci, particularly on chromosome 7 [39–43],
which are associated with both ASD and specific language
impairment. These convergent findings imply that shared
genes may lead to disruptions of social and language devel-
opment, and language delay is frequently observed in ASD
[44–46]. A relevant question is therefore whether language
delay, which entails altered emergence of foundational lan-
guage skills (e.g., comprehension and production of words,
word combinations, and simple sentences), and which dis-
plays some continuity with later language function [10, 47–
50], aggregates in unaffected toddler siblings of individuals
with ASD. Identification and characterization of an early
language endophenotype has implications for enhancing
diagnostic sensitivity and risk stratification, clarifying
developmental mechanisms, and refining targets for early
interventions.
To test whether early language delay is an endopheno-

type of ASD, we leveraged data from infant sibling studies,
developmental family studies designed to identify early pre-
dictive risk factors of ASD. In these genetically informative
study designs, infant siblings of children with ASD, who
are at elevated familial risk for ASD, as well as sibling
controls at low familial risk for ASD, undergo standardized
behavioral and diagnostic testing. Because these studies
generally involve similar ages and assessments, comparable
data can be pooled across samples to improve power to de-
tect traits associated with inherited ASD risk. By comparing
risk groups, endophenotypes can be identified as features
enriched in those at elevated familial risk of ASD. Evaluat-
ing differences in language function between high-risk
siblings without ASD (HR-noASD siblings) and low-risk
siblings without ASD (LR-noASD siblings) affords a
particularly stringent test for an endophenotype, since dif-
ferences between these unaffected groups are not biased by
the high comorbidity of language deficits in ASD [44–46]

Marrus et al. Journal of Neurodevelopmental Disorders           (2018) 10:29 Page 2 of 16



and are attributable to the presence of familial ASD liabil-
ity. Additionally, this comparison disambiguates the role of
inherited ASD risk, which is linked to underlying mecha-
nisms of ASD, from consequences of ASD itself, thereby fa-
cilitating investigation of the role of language-related
factors, such as sociodemographic variables, nonverbal cog-
nition, and ASD-related social deficits, in the manifestation
of an endophenotype.
Given extant literature on HR-noASD infant siblings,

we conducted a meta-analysis as a first step to test
whether language delay, as well as lower mean language
scores, aggregate in HR-noASD toddlers. We focused on
the toddler period since broad variation in advancing
language abilities at this stage could enhance detection
of group-level differences. We hypothesized that if dis-
ruptions in early language associate with inherited ASD
risk, a greater frequency of language delay and lower
mean language scores would be observed in HR-noASD
siblings versus LR-noASD siblings. Based on the results
of this meta-analysis, we tested whether observed differ-
ences could be replicated and extended using data from
the Infant Brain Imaging Study (IBIS), a large infant
sibling study [51]. The IBIS cohort expanded the sample
for meta-analysis while allowing more comprehensive
analyses which controlled for sociodemographic factors
not universally reported in published studies, examined
the distribution of language scores for each risk group,
and investigated the relationship between language and
nonverbal cognition, as well as language and ASD-related
social deficits. We hypothesized that if language delay
were an endophenotype, the HR-noASD group in IBIS
would show an increased prevalence of language delay
versus the LR-noASD group, a downward shift in distribu-
tions of language scores, and lower mean language scores
versus the LR-noASD group, even when sociodemo-
graphic factors were controlled.

Methods
Literature review
To review the available literature for evidence of associa-
tions between familial ASD risk and decreased language,
we searched for published articles both in PubMed, a
database with strong representation of clinical literature,
and Scopus, a database with broader coverage in the social
sciences [52]. The search used the keywords “autism,”
“language,” and “sibling” for manuscripts published since
2000, the year the DSM-IV-TR was published [53]. Inclu-
sion criteria were as follows: (1) analysis of a high-risk
group of toddlers, here considered children with a mean
age of 12–24 months, who had a sibling with ASD but no
ASD diagnosis themselves (HR-noASD siblings), (2) ana-
lysis of a low-risk group of toddlers who had a typically
developing sibling and no ASD diagnosis themselves
(LR-noASD siblings), (3) a clinical best estimate diagnosis

of ASD for children aged 24 months and up, an early age
with evidence for diagnostic stability [54–57], (4) imple-
mentation of standardized language assessments from 1 to
2 years of age, as this particular period captures variation
in the early emergence of spoken language, and (5) report-
ing of language scores or standardized criteria for lan-
guage delay for both HR-noASD and LR-noASD groups.
Studies without a diagnostic evaluation of toddlers below
age 24 months, when symptoms of ASD are less likely to
have stably emerged [58, 59], were retained for consider-
ation in the meta-analysis to promote broader representa-
tion of unique study populations, which enhances the
generalizability of findings in a meta-analysis [60].
The search identified 216 articles published between

January 1, 2000, and May 31, 2017. One hundred nineteen
of these involved HR-noASD siblings. Fifty-seven articles
reported on toddlers (i.e., children with a mean age of 12–
24 months), and 52 of these examined aspects of language
development. Twenty-six of the 52 articles satisfied inclu-
sion criteria. Among these 26 articles, 15 articles were
eliminated because they shared participants with another
study, either due to multiple manuscripts about the same
population or due to manuscripts describing a consortium
of studies. The remaining 11 articles represented data from
all samples in the eliminated articles and were chosen due
to having the largest number of children closest to
24 months of age, a common assessment time point
expected to exhibit a broader range of spoken language
abilities than younger ages. Where language data were
available from multiple measures within a study, continu-
ous scores from the Mullen Scales of Early Learning
(MSEL) [61], the most frequent assessment encountered,
were selected to enhance comparability across studies as
well as IBIS, which featured MSEL data. One study [62],
which reported age equivalent scores on the MSEL but did
not control for age, was excluded to avoid confounding age
differences with differences in language ability. To promote
uniformity in the meta-analysis of continuous language
scores, one additional study population was excluded [63,
64], as it used the MacArthur-Bates Communicative Devel-
opment Inventories [65], a parent-report measure.
A large study from the Baby Sibling Research Consortium

(BSRC) [66], which was included in the main meta-analysis
presented in Fig. 1, differed from other studies in that it
reported continuous language scores as estimated marginal
means (rather than T-scores) based on a model testing
effects of sex, age, language subscale, and diagnostic group
on language outcome. This study shared subjects with some
smaller studies containing appropriate continuous language
data that were excluded from the main meta-analysis of
continuous scores [45, 67, 68]. For purposes of comparison,
supplemental analyses repeat the meta-analysis using these
smaller studies instead of this large BSRC study and show
consistent results (Additional file 1: Table S1 and Figure
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S1). Note that one of these smaller studies, Mitchell et al.
[45], contained categorical data on language delay, which
were included in that segment of the meta-analysis reported
in the main text (Table 1).
Lastly, meta-analytic findings from the literature review

are first presented without incorporating IBIS data, since
these results motivated subsequent analyses in IBIS to test
for replicability and the impact of covariates on group
differences.

IBIS sample
The Infant Brain Imaging Study (IBIS) is a longitudinal
multisite study of infants at familial risk of ASD by virtue of
having a sibling with a diagnosis of ASD, verified by med-
ical records and the Autism Diagnostic Interview-Revised
[69]. IBIS also contains a low-risk comparison group of

infant siblings, who have no first-degree family members
meeting screening criteria for ASD or intellectual disability
[51]. Rates of ASD diagnosis in IBIS [51, 70] have been
shown to be similar to other infant sibling studies [71]. Par-
ticipants in the first wave of IBIS, whose data were used in
these analyses, were behaviorally assessed and completed
magnetic resonance imaging (MRI) during natural sleep at
ages 6, 12, and 24 months at the following study sites: the
University of North Carolina, the University of Washing-
ton, The Children’s Hospital of Philadelphia, and Washing-
ton University in St. Louis. The Montreal Neurological
Institute served as the data coordination center. Exclusion
criteria included: (1) diagnosis or physical signs of known
genetic conditions or syndromes, (2) significant medical or
neurological conditions or sensory impairments, (3) birth
weight < 2000 g and/or gestational age < 36 weeks, (4)

Fig. 1 Meta-analysis of language scores in high-risk siblings without ASD. Forest plots display the results of the meta-analysis examining
differences in receptive and expressive language scores between low-risk siblings without ASD (LR-noASD) and high-risk siblings without ASD
(HR-noASD). Circle sizes illustrate each study’s weighted impact when including IBIS data, with values for weights and effect sizes listed on the
right. Error bars represent 95% confidence intervals (CI). Summary weighted effect sizes for published studies only, indicated as “Overall (literature
only),” are shown as a light gray diamond; the dark gray diamonds show the result including IBIS data. Numbers of subjects in HR-noASD (HR)
and LR-noASD (LR) groups are adjacent to these diamond markers. Both summary effect sizes indicate that receptive and expressive language
scores are significantly lower in HR-noASD siblings. The effect size is moderate for receptive language and small for expressive language
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significant perinatal adversity and/or exposure in utero to
neurotoxins, (5) contraindication for MRI, (6) predominant
home language other than English, (7) first degree relative
with psychosis, schizophrenia, bipolar disorder, and (8)
adopted children or half-siblings of the proband. The
majority of analyses presented here involve HR-noASD sib-
lings and LR-noASD siblings. High-risk siblings with ASD
were included in a single sub-analysis testing differences be-
tween HR-noASD siblings and high-risk siblings with ASD.
Informed consent approved by each site’s Human Subjects
Review Board was obtained for all families.

Measures
Mullen Scales of Early Learning (MSEL)
The MSEL is a standardized direct assessment of cognitive
development normed for ages from birth to 68 months
[61]. Subscales include receptive and expressive language,
as well as visual receptive and motor skills. Mullen
T-scores, based on standardized norms accounting for
age, were used to index levels of receptive and expressive
language function. Language delay was defined as a
T-score ≤ 35, or 1.5 standard deviations below the mean
standard score, in accordance with common practice [70,
72], on either receptive or expressive language subscales.

A nonverbal composite score was created by averaging the
T-scores for visual reception and fine motor subscales.

Autism Diagnostic Observation Schedule (ADOS)
The ADOS [73] is a semi-structured play assessment of
characteristic features of ASD in the domains of communi-
cation, social interaction, play skills, and restricted inter-
ests/repetitive behavior. ADOS module 1 or 2, designed for
different levels of language development, was administered
to all subjects at 24 months by certified evaluators who
were research reliable across all four sites [51]. Ratings
were based on the severity and number of ASD symptoms
demonstrated during the assessment, and scores were
calculated using empirically derived, conventional scoring
algorithms comprised of items identified as strong contrib-
utors to variance in prior factor analysis of the ADOS [74].
To maximize the range of detectable variation in children
without ASD, the summed item-level scores from the
ADOS social affect scoring algorithm, based on a previously
identified ADOS social affect factor measuring ASD-related
social deficits [74], were used as an index of social perform-
ance. Higher social affect scores corresponded to an in-
creased burden of ASD-related deficits. In the supplement,
results for analyses using calibrated severity scores for social

Table 1 Study characteristics of publications in meta-analysis

Publication HR/LR Mean age (mo.) Language delay criteria Clinical best
estimate measures

Language delay
(HR versus LR)

MSEL receptive
language

MSEL expressive
language

Landa and
Garrett-Mayer [72]

38/25 24 ≤ 1 SD mean: M-CDI
or PLS

ADOS OR = 3.57 (.70–18.16)
χ2 = 1.60, p = .21

n/a n/a

Iverson and
Wozniak [115]

14/18 18 ≤ 5th percentile:
M-CDI words produced

n/a OR = 37.00
(1.87–732.72)
χ2 = 8.78, p = .003

n/a n/a

Gamliel et al. [116] 38/38 24 ≤ 2 SD mean: BSID
or RDLS

ADOS-G
ADI-R

OR = 7.33
(1.50–35.86)
χ2 = 5.94, p = .015

n/a n/a

Mitchell et al. [45] 91/52 24 ≤ 1.5 SD mean:
MSEL or PLS

ADOS
DSM-IV-TR

OR = 1.65 (.50–5.47)
χ2 = .29, p = .59

n/a n/a

Toth et al. [117] 42/20 21 n/a ADOS
ADI-R
DSM-IV-TR

n/a 54.50 (6.40)
46.55 (15.60)

48.45 (6.65)
49.07(12.24)

Stone et al. [118] 64/42 16 n/a n/a n/a 48.2 (10.8)
43.8 (12.6)

48.7 (10.5)
45.1 (11.1)

Paul et al. [119] 38/31 12 n/a n/a n/a 46.1 (7.2)
41.1 (9.7)

47.4 (12.0)
40.8 (10.7)

Curtin and
Vouloumanos [120]

31/31 12 n/a n/a n/a 45.97 (7.11)
42.16 (7.14)

53.93 (10.47)
49.87 (11.04)

Messinger et al. [66] 989/583 24 n/a ADOS
MSEL

n/a 27.28 (5.12)
24.63 (5.67)

25.78 (5.29)
24.11 (5.78)

Except where stated, language delay was defined as either receptive or expressive language delay. Odds ratios (ORs) are listed with 95% confidence intervals in
parentheses. With the exception of Messinger et al., 2015, which used age equivalent scores at 24 months of age, language scores consisted of T-scores on the
Mullen Scales of Early Learning (MSEL), with low-risk siblings without autism spectrum disorder (ASD) listed first and high-risk siblings without ASD listed second.
Bolded values indicate significant risk group differences at p < .05. mo. months, HR high-risk siblings without ASD, LR low-risk siblings without ASD, M-CDI
MacArthur Communicative Development Inventory, BSID Bayley Scales of Infant Development, RDLS Reynell Developmental Language Scales, PLS Preschool
Language Scale, ADOS Autism Diagnostic Observation Schedule, ADOS-G Autism Diagnostic Observation Schedule-General, ADI-R Autism Diagnostic Interview-
Revised, DSM-IV-TR Diagnostic and Statistical Manual of Psychiatric Disorders, 4th edition, text revision
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affect [75] are presented with similar findings (Add-
itional file 1: Table S2).

DSM-IV-TR checklist
Diagnoses of ASD were made using a clinical best esti-
mate diagnosis derived from the IBIS behavioral battery
and observations during in-person assessment, including
the ADOS [51]. Testing, video, and interview data were
reviewed by a second experienced clinician to confirm
that criteria for an ASD [(autism or Pervasive Develop-
mental Disorder not otherwise specified (NOS)] were
met using the DSM-IV-TR checklist at 24 months [53].

Statistical analyses
The Mantel-Haenszel test, a meta-analytic technique for
categorical data [76], was used to evaluate proportions
of language delay in HR-noASD versus LR-noASD sib-
lings. To compare language scores in these risk groups
across studies, a meta-analysis was performed using a
random effects model with inverse variance weighting
[77]. First, effect sizes of the differences in language
scores between LR-noASD and HR-noASD groups were
calculated for each study. Study-specific inverse variance
weights, which accounted for sample size and standard
error, were then derived, with larger sample size and
lower standard errors corresponding to greater inverse
variance weight. To standardize the impact of each study
in the meta-analysis, each study’s effect size was multi-
plied by its inverse variance weight. These products were
summed and divided by the sum of inverse variant
weights for all studies to determine a summary effect
size or standardized mean difference. A random effects
model was conservatively chosen to account for variance
between and within studies, although cross-study het-
erogeneity was not significant based on the Cochran Q
statistic [77] (receptive language Q = 0.75, df = 4, p = .95;
expressive language Q = 3.48, df = 4, p = .48). Age and
sociodemographic variables (the latter of which were not
uniformly available across studies) were not tested as
covariates in these models due to the modest number of
studies (< 10), which constrains the ability to accurately
estimate the impact of potential moderators through
meta-regression [60, 78].
Within the IBIS dataset, differences in participant char-

acteristics between HR-noASD and LR-noASD groups at
age 24 months (and in one sub-analysis, between
HR-noASD siblings and high-risk siblings with ASD) were
examined using t tests or χ2 tests where appropriate for
continuous or categorical variables. Children with signifi-
cant generalized cognitive delay, indicated by a nonverbal
developmental composite score ≥ 2 standard deviations
below the mean (a level in the bottom 5% of the popula-
tion) were removed from analyses (HR-noASD n = 1;
LR-noASD n = 1). Binary logistic regression, with ASD-risk

status (HR-noASD versus LR-noASD) as the independent
variable, was used to test for differences in the presence of
language delay (categorized as having or not having lan-
guage delay), the dependent variable, while controlling for
the sociodemographic factors of sex, maternal education
(categorized according to those with and without a college
degree), income (categorized as greater or less than
$75,000 per year), and race (categorized as Caucasian or
not Caucasian), as these variables have generally been
found to be associated with early language development
[79–83]. Sociodemographic factors were entered prior to
ASD risk status in these models. Hierarchical linear
regressions, with language scores as the dependent vari-
able, tested the influence of ASD risk status, the independ-
ent variable, on language ability when controlling for
sociodemographic factors, as described above. Additional
hierarchical linear regressions examined contributions of
nonverbal cognition (nonverbal composite score) and
social performance (ADOS social affect score) to variation
in language scores. Correlation values for language scores
with other behavioral scores were Fisher z-transformed to
test for significant differences between HR-noASD and
LR-noASD groups.

Results
Meta-analysis: review of the literature for associations
between ASD risk and early language
Our literature review identified nine infant sibling studies
with standardized language data in HR-noASD and
LR-noASD siblings (Table 1). Four of these studies con-
tained categorical data on the presence of language delay
(see Table 1 for individual study criteria), for a total of 181
HR-noASD siblings and 133 LR-noASD siblings. Although
all four studies displayed odds ratios consistent with
greater language delay in HR-noASD siblings, many of the
samples were small, and only two studies showed statisti-
cally significant differences in odds ratios between the two
risk groups. The Mantel-Haenszel test, which allowed
pooling of participants across these studies, showed that
HR-noASD siblings were 4.17 (95% CI 1.74–9.99) times
more likely to experience language delay than LR-noASD
siblings [χ2MH(1) = 14.62, p < .001; LR-noASD 6.0%
language delay; HR-noASD 21.0% language delay].
For five of the studies (Table 1), comparison of early lan-

guage ability between HR-noASD and LR-noASD siblings
was possible based on continuous scores from the MSEL.
These scores provided enhanced sensitivity relative to
categorical data for examining risk group differences in
receptive and expressive language. Across studies, mean
language scores for both groups (Table 1) fell within a
normative range (within 1 SD, 10 points, of a mean stand-
ard MSEL T-score of 50), although scores were generally
lower for the high-risk group. A meta-analysis (Fig. 1)
using weighted effect sizes for studies including 1164
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HR-noASD siblings and 707 LR-noASD siblings indicated
significantly higher receptive language for LR-noASD sib-
lings, with a standardized mean difference (i.e., summary
effect size) of 0.48 (95% confidence interval 0.39–0.58).
For expressive language, a standardized mean difference
of 0.30 (95% confidence interval 0.21–0.40) also indicated
significantly higher scores for LR-noASD siblings. Similar
effect sizes were observed in a secondary meta-analysis
substituting the larger BSRC study with smaller studies
sharing some of the same subjects (see Additional file 1:
Figure S1 and Table S1). Meta-analysis of the available lit-
erature thus suggests that around the age of identification
of core ASD symptoms, HR-noASD siblings exhibit more
frequent language delay and lower receptive and expres-
sive language scores than low-risk counterparts.

The Infant Brain Imaging Study (IBIS): testing for
replication of language differences in HR-noASD siblings
While the meta-analysis provides evidence for the aggrega-
tion of decreased early language skills in unaffected
high-risk siblings, the diversity of participant ages and as-
sessments could inflate variability in language measure-
ments, potentially leading to underestimation of differences
between risk groups. Additionally, studies with participants
under age 24 months, below the usual age of assessment
for ASD, included children who could later be diagnosed
with ASD. Therefore, we investigated whether a similar re-
sult would be observed in the Infant Brain Imaging Study
(IBIS), a large infant sibling study sample. IBIS data allowed
the analysis of covariates not uniformly available from stud-
ies in the meta-analysis as well as augmentation of the
meta-analysis. We analyzed children without ASD at
24 months of age, an age anticipated to capture a wider
range of measurable variation in language than younger
ages (e.g., 12 months, when children are in the process of
learning single words). Sample characteristics (n = 350) are

shown in Table 2. HR-noASD (n = 235) and LR-noASD (n
= 115) did not significantly differ in age, sex, income, or
race and showed similar means and standard deviations for
the ADOS social affect score. Significant differences be-
tween risk groups were observed in maternal education, a
nonverbal developmental composite score, and receptive
and expressive language scores. The high-risk group
showed lower MSEL scores, a higher prevalence of
language delay, and a lower percentage of mothers with col-
lege or graduate degrees. Comparison of IBIS HR-noASD
siblings to high-risk siblings with ASD revealed lower lan-
guage function in the ASD-affected group, confirming that
the IBIS sample is appropriately representative to test a
candidate endophenotype (Additional file 1: Supplemental
Results).

Comparison of language delay in HR-noASD and LR-
noASD siblings in IBIS
To account for sociodemographic factors associated with
language outcomes, including sex, maternal education,
and income, we performed a binary logistic regression
comparing the prevalence of language delay in the
LR-noASD and HR-noASD siblings in IBIS. Log of the
odds of language delay (coded for as the presence or ab-
sence of receptive or expressive language delay) served
as the dependent variable. ASD risk group was entered
after controlling for sociodemographic variables. The
model was significant (χ2(5) = 13.35, p = .02) and showed
appropriate goodness of fit (Hosmer’s and Lemeshow’s
test χ2(8) = 3.32, p = .91). ASD risk status was a signifi-
cant contributor to the model (χ2Wald(1) = 5.21, p = .022)
and accounted for 3.7% of the variance in language delay
status, with HR-noASD being 3.18 times (95% CI =
1.18–8.59) more likely than LR-noASD to have a
language delay. Sex, maternal education, income, and
race were not significant contributors.

Table 2 Participant characteristics of Infant Brain Imaging Study sample

LR-noASD (n = 115) HR-noASD (n = 235) Statistics

Sex (n male) 69 (60%) 133 (56.6%) χ2(1) = .37, p = .55

Age (months) 24.61 (.79) 24.69 (.76) t(1) = −.93, p = .35

Income [n < 75 K (%)] 44 (40.4%) 94 (42.2%) χ2(1) = .096, p = .76

Race [n (% Caucasian)] 100 (87.0%) 205 (87.2%) χ2(1) = .005, p = .94

Maternal education [n (% college degree or above)] 99 (86.1%) 160 (68.1%) χ2(1) = 13.01, p < .001

MSEL nonverbal developmental composite 56.83 (8.54) 51.87 (8.45) t(348) = 5.14, p < .001

MSEL receptive language score (T-score) 56.98 (8.71) 51.79 (10.43) t(348) = 4.61, p < .001

MSEL expressive language score (T-score) 53.23 (10.16) 49.13 (11.29) t(348) = 3.30, p = .001

Language delay (receptive or expressive) [n (%)] 5 (4.3%) 32 (13.6%) χ2(1) = 7.02, p = .008

ADOS social affect score 2.11 (2.36) 2.34 (2.49) t(344) = −.83, p = .41

The statistics column shows results of testing for differences in low-risk siblings without autism spectrum disorder (LR-noASD) and high-risk siblings without ASD
(HR-noASD siblings). Significant differences are bolded. MSEL Mullen Scales of Early Learning, ADOS Autism Diagnostic Observation Schedule. The mean T-score for
the MSEL in the general population is 50, with a standard deviation of 10. Language delay is defined as MSEL receptive or expressive scores ≤ 1.5 standard
deviations below the mean
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To test whether receptive and/or expressive language
individually contributed to this effect, analyses were re-
peated separately for receptive and expressive language
delay. The model for receptive language delay was also
significant (χ2(5) = 20.32, p = .001) and showed good fit
(Hosmer’s and Lemeshow’s test χ2(7) = 3.24, p = .86). Risk
status accounted for 5.7% of the variance in receptive lan-
guage, and HR-noASD siblings were 5.82 times (95% CI
1.30–26.05) more likely to have receptive language delay
(χ2Wald(1) = 5.30, p = .021). The model for expressive lan-
guage delay was not significant (χ2(5) = 6.71, p = .24).

Integration of IBIS data in the meta-analysis of language
delay
Inclusion of IBIS percentages for language delay (recep-
tive and/or expressive) in the meta-analysis increased
the precision of the findings, with HR-noASD siblings
(n = 416) being 3.87 times (95% CI 2.04–7.33) more
likely to have a language delay than LR-noASD siblings
(n = 248; χ2MH(1) = 21.32, p < .001; HR-noASD 17.0%
language delay; LR-noASD 5.2% language delay). When
excluding the study of children under age 24 months
without diagnostic data [83], the odds ratio was similar
[3.29 (95% CI 1.40–7.69), χ2MH(1) = 14.58, p < .001;
HR-noASD n = 402, 15.7% language delay; LR-noASD n
= 230, 5.7% language delay]. Integration of IBIS with the
literature confirms that language delay does aggregate in
unaffected, toddler-aged, high-risk siblings.

Comparison of language scores in HR-noASD and LR-
noASD siblings in IBIS
Findings from the meta-analysis do not distinguish whether
observed differences in ASD risk groups are attributable to
a subgroup of HR-noASD siblings with language impair-
ment or a shift of continuous score distributions towards
decreased language function across all HR-noASD siblings.
Such a pathological shift would be expected for an endo-
phenotype encompassing the full range of language func-
tion, with language delay representing a pathological
extreme. Therefore, we next examined the language score
distributions for high- and low-risk siblings in IBIS without
ASD. Histograms of T-scores on the MSEL receptive and
expressive language subscales demonstrated a continuous,
unimodal distribution for both groups (Fig. 2). Visual in-
spection of binned scores showed that HR-noASD siblings
had a smaller proportion of high scores than LR-noASD
siblings and a larger proportion of low scores, correspond-
ing to a pathological shift in score distributions for the
HR-ASD siblings. Comparison of proportions for the
HR-noASD versus LR-noASD siblings in the top and bot-
tom thirds of the sample was consistent with this down-
ward shift in scores (HR-noASD versus LR-noASD in the
top third—receptive 26.4% versus 47.8%, χ2(1) = 5.71, p =
0.017; expressive 26.0% versus 48.7%, χ2(1) = 6.41, p =

0.011; in the bottom third—receptive 39.6% versus 20.9%,
χ2(1) = 2.88, p = 0.090; expressive 42.1% versus 15.7%, χ2(1)
= 4.47, p = 0.035). Additionally, HR-noASD siblings dem-
onstrated lower mean receptive and expressive language
scores than LR-noASD siblings (Table 2) at effect sizes
similar to those observed in the meta-analysis (receptive
Cohen’s d = .54 and expressive Cohen’s d = .38).
We next implemented a hierarchical linear regression to

test whether language scores, the dependent variable, were
predicted by ASD risk status, the independent variable.
These models controlled for sociodemographic variables,
which were entered first. Receptive and expressive lan-
guage were analyzed separately, given the distinct effect
sizes for these two language domains in the meta-analysis.
In the case of receptive language (Table 3), ASD risk sta-
tus, sex, and income were significant contributors to the
model (F(5,331) = 10.45, p < .001), which accounted for
12.5% of the variance (adjusted R2) in receptive language
scores, with risk status contributing 4.4% of the variance.
As with receptive language, the effect of ASD risk status

was significant for expressive language when controlling
for sociodemographic variables (Table 3). The total model
explained a similar amount of the variance in expressive
language, 8.3%, [F(5,331) = 6.96, p < .001], with risk status
accounting for approximately 1.6% of that variance. Thus,
in keeping with results for language delay, familial risk of
ASD was associated with lower language scores even
when controlling for variation attributable to these
sociodemographic factors.

Integration of IBIS data in the meta-analysis of
quantitative language scores
Inclusion of the IBIS sample in the meta-analysis of MSEL
language scores increased the precision of summary effect
sizes for both receptive and expressive language [receptive
0.49 (95% CI 0.40–0.58); expressive 0.31 (95% CI 0.23–
0.40)], based on a total of 1399 HR-noASD and 822
LR-noASD siblings (Fig. 1). Removing the studies of tod-
dlers under 24 months without diagnostic data (86–88)
yielded similar values [receptive language 0.49 (95% confi-
dence interval 0.40–0.58); expressive language 0.30 (95%
confidence interval 0.21–0.40); HR-noASD n = 1266;
LR-noASD n = 718].

Examination of the specificity of a language
endophenotype in IBIS
The above findings demonstrate an association of familial
ASD risk with decreased early language function, consist-
ent with a language endophenotype of ASD. To investigate
whether ASD risk status was related to variation specific
to language, or aspects of language associated with nonver-
bal cognitive ability, a known predictor of language [84–
86], we next evaluated the effect of ASD risk status when
nonverbal cognitive ability was included in the model. The
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MSEL nonverbal composite score was introduced as a
third step in the models. In the case of receptive lan-
guage, the model was significant (F(6,331) = 27.10, p
< .001) and accounted for 32.1% of the variance
(adjusted R2), with nonverbal cognition adding 19.6%
variance. Even with the inclusion of the nonverbal

score, the effect of ASD risk status on receptive lan-
guage remained significant (beta = − 2.09; SE = 1.03 p
= .044). In contrast to receptive language, the effect of
risk status for expressive language was no longer sig-
nificant (beta = −.44; SE = 1.16 p = .71), with the non-
verbal composite accounting for 18.6% of the variance

Fig. 2 Language scores at 24 months of age in IBIS infant siblings. Histograms display a wide distribution of T-scores for Mullen expressive and
receptive language scores in the Infant Brain Imaging Study among both the low-risk siblings without ASD (LR-noASD) and high-risk siblings without
ASD (HR-noASD). HR-noASD siblings (black bars) generally show a larger percentage of individuals in bins for lower scores, whereas LR-noASD sibling
(gray bars) show a larger percentage of individuals in bins with higher scores, signifying a pathological shift in the distribution for the high-risk group

Table 3 Receptive and expressive language models

Unstandardized coefficients Standardized coefficients T Sig. 95.0% confidence interval for B

B Std. error Beta Lower Upper

Receptive language model

(Constant) 51.19 2.75 18.65 < .001 45.79 56.59

Sex 3.57 1.05 .18 3.39 .001 1.50 5.65

Maternal education 2.08 1.27 .092 1.63 .103 − .43 4.59

Income 3.27 1.13 .16 2.89 .004 1.05 5.49

Race − 2.83 1.55 − .094 − 1.82 .069 − 5.88 .23

ASD risk status − 4.69 1.13 − .22 − 4.15 .000 − 6.91 − 2.47

Expressive language model

(Constant) 43.13 3.05 14.13 < .001 37.12 49.13

Sex 3.50 1.17 .16 2.98 .003 1.19 5.80

Maternal education 3.72 1.42 .15 2.63 .009 .94 6.51

Income 2.55 1.26 .11 2.02 .044 .072 5.02

Race − .043 1.73 − .0010 − .025 .98 − 3.44 3.35

ASD risk status − 3.19 1.26 − .14 − 2.54 .011 − 5.66 − .72

In these models, language (either receptive or expressive) is the dependent variable. ASD-risk status [0 = low-risk sibling without ASD, 1 = high-risk sibling without
ASD] is the independent variable. Covariates of sex (0 =male, 1 = female), maternal education (0 = no college, 1 = college or greater), income (0 = <$75,000/year
and 1 = ≥$75,000/year), and race (0 = Caucasian, 1 = non-Caucasian) are entered first into the model, followed by risk status. Bolded variables demonstrate a
significant relationship with language. For receptive language, sex, income, and ASD risk are significant, with females and higher family incomes associated with
higher scores. ASD risk status shows the greatest impact, and greater ASD risk is associated with lower language scores. For expressive language, all variables
except race are significant and show similar relative impact. Female sex, higher maternal education, and higher family income are associated with higher scores,
while greater ASD risk is associated with lower expressive language scores. ASD autism spectrum disorder, std. standard, sig. significance
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in expressive language (F(6,331) = 21.27, p < .001; beta
= .59; SE = .064 p < .001).

Examination of the relationship between ASD-related
social features and language in IBIS
An important issue for genetic discovery in ASD is the ex-
tent to which distinct genetic factors account for variation
in ASD-related phenotypes. While the findings above sup-
port overlapping genetic factors for ASD and language
delay, they do not address the extent of this overlap. In
the case of high overlap, most of the same genetic factors
would account for variation in language and social behav-
ior, whereas in the case of lower partial overlap, some
genes which contribute to ASD risk would exert inde-
pendent effects on social and language phenotypes. We
therefore tested whether the ADOS social affect score, an
index of social performance quantifying ASD-related so-
cial deficits, influenced relationships between ASD risk
and language scores. We reasoned that if the effect of
ASD risk group on language was no longer significant
when accounting for social affect score, then core
ASD-related social symptoms and language function share
a high degree of overlapping genetic factors. Alternatively,
should the effect of ASD risk group on language persist

when accounting for social affect score, then shared gen-
etic contributors to autistic social features and language
function would appear partially independent at this age.
A final step of hierarchical regression models is shown in

Table 4. As above, models controlled for sex, maternal edu-
cation, income, and race in the first step, followed by a sec-
ond step adding risk group and a third step adding social
affect score. Models including social affect score were sig-
nificant for both receptive and expressive language (recep-
tive F(7,327) = 9.65, p < .001; expressive F(7,327) = 7.27, p
< .001), and social affect score contributed to variation in
both receptive and expressive language. The contribution
of ASD risk group to both receptive and expressive lan-
guage remained significant with social affect score included
(Table 4), consistent with partially independent genetic fac-
tors accounting for early ASD-related deficits in language
and social behavior (see Additional file 1: Supplemental Re-
sults and Table S1, for consistent findings using the ADOS
calibrated severity social affect scores).
The final step tested an interaction between ASD risk

group and social affect score, as similar mean social affect
scores for both LR-noASD and HR-noASD siblings
(Table 1; see Additional file 1: Figure S2 for score distribu-
tions) implied a preservation of social performance

Table 4 Group moderation of relationships between social performance and language

Unstandardized coefficients Standardized coefficients T Sig. 95.0% confidence interval for B

B Std. error Beta Lower Upper

Receptive language model

(Constant) 53.90 2.85 18.90 < .001 48.29 59.51

Sex 3.21 1.05 .16 3.05 .002 1.14 5.28

Maternal education 2.23 1.27 .098 1.76 .080 − .27 4.73

Income 3.60 1.13 .18 3.19 .002 1.38 5.82

Race − 2.61 1.54 − .087 − 1.70 .090 − 5.63 .41

ASD risk status − 6.41 1.52 − .30 − 4.21 < .001 − 9.40 − 3.41

Social affect − 1.35 .41 − .32 − 3.33 .001 − 2.14 − .55

Social affect by risk status .92 .48 .21 1.92 .056 − .022 1.86

Expressive language model

(Constant) 46.42 3.16 14.68 < .001 40.20 52.64

Sex 3.15 1.17 .14 2.70 .007 .86 5.45

Maternal education 4.06 1.41 .16 2.88 .004 1.29 6.82

Income 2.76 1.25 .12 2.21 .028 .30 5.22

Race .16 1.70 .005 .096 .92 − 3.18 3.51

ASD risk status − 6.41 1.69 − .27 − 3.80 < .001 − 9.73 − 3.094

Social affect − 1.71 .45 − .37 − 3.80 < .001 − 2.59 − .82

Social affect by risk status 1.68 .53 .35 3.16 .002 .63 2.72

These parameters involve the fourth and final step in a hierarchical linear regression model in which either Mullen receptive or expressive language score is the
dependent variable. Step 1 consists of the covariates sex, maternal education, and income; step 2 introduces autism spectrum disorder (ASD) risk status; and step 3
introduces social affect score on the Autism Diagnostic Observation Schedule, which measures autistic social deficits. The fourth step introduces an interaction term for
ASD risk status and social affect. Bolded variables demonstrate a significant relationship with language. Social affect score is a significant contributor to variation in both
receptive and expressive language. The interaction is significant for expressive language and shows a trend for receptive language. std. standard, sig. significance
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relative to language in HR-noASD siblings. We therefore
tested an interaction to determine whether the nature of a
relationship between language and ASD-related social
deficits differed between the risk groups. A significant
interaction was found for expressive language (p = .002),
as well as a trend-level interaction effect for receptive
language (p = .056) (Table 4). Given these results, we next
examined correlations for social affect and language scores
separately for LR-noASD and HR-noASD groups.
LR-noASD siblings showed moderate correlations
between language and social affect scores (receptive:
Spearman’s rho = − .33, p < .001.; expressive Spearman’s
rho = − .41, p < .001), such that higher social affect scores,
corresponding to greater ASD-related social deficits, were
associated with lower language scores. In contrast,
HR-noASD siblings exhibited no significant correlations
between language and social affect scores (receptive: Spear-
man’s rho = − .069, p = .29; expressive: Spearman’s rho =
− .051, p = .44; see Additional file 1: Supplemental Results,
for similar findings when analyzing high-risk males and fe-
males separately). These differences in correlations for lan-
guage and social affect scores were significant between
LR-noASD and HR-noASD groups (receptive language: Z
= − 2.33, p = .02; expressive language: Z = − 3.34, p < .001).
By comparison, moderate correlations were present in both
groups for language scores and nonverbal cognition, a de-
velopmental domain also related to language (LR-noASD
receptive: Spearman’s rho = .62, p < .001; LR-noASD expres-
sive: Spearman’s rho = .42, p < .001; HR-noASD receptive
Spearman’s rho = .49, p < .001; HR-noASD expressive:
Spearman’s rho = .53, p < .001).

Discussion
Convergent approaches support language
endophenotypes of ASD
These findings demonstrate that decreased language func-
tion in early development, whether measured categorically
as language delay or continuously as a dimensional lan-
guage score, aggregates in unaffected toddlers at elevated
genetic risk of ASD. The result was particularly robust for
receptive language, which displayed an effect of ASD risk
on language delay as well as continuous language scores.
Analyses in IBIS also confirmed that the effect of
ASD-risk status on language was significant when control-
ling for sociodemographic factors known to be associated
with language. The positive associations observed between
24-month language and female sex, maternal education,
and income, are in agreement with the existing literature,
illustrating the representativeness of the IBIS sample.
The language differences observed in HR-noASD tod-

dlers fulfill several previously elaborated criteria for endo-
phenotypes. First, an IBIS sub-analysis showed lower
indices of language function, a heritable ability [9], in
high-risk siblings with ASD versus HR-noASD siblings,

satisfying the criterion of co-segregation (i.e., increased
co-inheritance) in affected family members. As stated
above, lower language abilities also aggregated in
HR-noASD siblings compared to LR-noASD siblings, with
more frequent language delay and lower mean language
scores reflecting a pathological shift in underlying score
distributions across the HR-noASD group. These findings
affirm that decrements in early language function are
associated with increased genetic liability for ASD and
represent ASD endophenotypes. Prior studies reporting
enhanced signal detection of ASD-associated genetic vari-
ants when language is incorporated in phenotyping [87,
88] provide empirical support for language’s value added
as an ASD endophenotype and for the ability of family
studies to inform genetic investigations of ASD.
Our approach attempted to maximize detectable vari-

ation in language by focusing on a narrow age range
characterized by rapid growth in foundational language
skills. Our findings thus also suggest that genetic factors
influencing early language development overlap with
genetic risk for ASD. These results extend prior work
from large family [89] and factor analytic studies [90, 91]
linking language impairment in older children and adults
with the occurrence of ASD. They also corroborate a
recent meta-analysis showing lower language scores in
high-risk toddler siblings, which included siblings with
and without ASD [92]. We chose to present both the
current meta-analysis and IBIS analyses here given that
(1) this meta-analysis evaluated risk group differences
involving not only language scores but also language
delay, (2) the replication provided here confirms
language differences in high-risk siblings even when
restricting analyses to high-risk siblings without ASD,
(3) the meta-analysis motivated more in-depth analyses
in IBIS, and (4) the dual approaches attempted to
address longstanding inconsistencies in the literature by
providing more representative evidence for early
language as an ASD endophenotype.

Receptive language appears more affected than
expressive language in high-risk siblings
HR-noASD siblings were three to four times more likely
to exhibit language delay than LR-noASD siblings, con-
sistent with a prior retrospective report [21], and IBIS
analyses showed that receptive language delay, but not
expressive language delay, accounts for much of this dif-
ference. Discrepant findings for receptive and expressive
language delay are consistent with a lower signal for the
expressive language endophenotype, which could be
detected based on continuous scores but not the more
stringent and less sensitive categorical language delay
variable. Given that early language delay may be associ-
ated with subsequent language deficits [10, 47] and that
receptive language impairment in particular is associated
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with worse functional outcomes than expressive language
impairment [93], developmental surveillance in high-risk
siblings with language delays may be especially important
to capitalize on opportunities for intervention [94].
Summary effect sizes from the meta-analysis were also

consistent with a larger effect of ASD-risk status for re-
ceptive language, and confidence intervals for receptive
and expressive language were almost entirely
non-overlapping (Fig. 1). This pattern parallels the pre-
ponderance of greater receptive versus expressive lan-
guage deficits reported in children with ASD [95–98], as
anticipated for an ASD endophenotype. Previous work
has suggested that this discrepancy could reflect atypical
mechanisms of language acquisition in ASD, whereby, in
contrast to typical development, word comprehension
appears less advanced than word production [97, 98].
While underlying mechanisms for this profile remain a
question for future research, our findings reveal that at
the group level, an analogous discrepancy in receptive
and expressive language occurs in the context of ASD
risk alone, without the elevated social deficits character-
istic of ASD. These results also imply that the specific
aspect of language measured may affect the ability to as-
certain genetic associations between ASD and language
and that some of the inconsistency in the literature
could be resolved by distinguishing receptive and ex-
pressive language abilities.
One additional consideration regarding the distinct ef-

fects for receptive versus expressive language is the con-
text of the assessment. Because the MSEL involves an
interaction between an examiner and a child, the child’s
social responsiveness, in itself a potential indicator of gen-
etic liability for ASD, could impact his/her performance. It
is possible that the evaluation of receptive language, which
involves gauging a child’s response to an examiner’s
prompt, may be more influenced by a child’s social re-
sponsiveness than expressive language, which may entail
more self-motivated language output. While analyses in
IBIS mitigate this concern by showing a similar relation-
ship of ADOS social affect scores to both receptive and
expressive language (Table 4), the persistent effect for
ASD risk group in these models also implies the existence
of shared genetic risk factors for ASD and language which
are not associated with social performance. Thus, lan-
guage assessments that reduce embedded social demands,
for example, by using a psychophysiological measure such
as auditory ERP to index language ability, rather than an
interpersonal response, could be important for refining in-
formative language endophenotypes of ASD.

Specificity of the language endophenotype differs for
receptive and expressive language
To explore the specificity of language endophenotypes, we
tested the impact of nonverbal cognitive development on

the relationship between risk status and quantitative
language function. This point is of particular interest in
the high-risk group, since a higher frequency of general
cognitive deficits has been observed in family members of
individuals with ASD [28, 89], and slightly lower mean
cognitive scores were observed in IBIS and other infant
sibling samples [99]. As expected, nonverbal cognition did
contribute to variation in receptive and expressive
language. For receptive language, a significant effect of risk
status persisted even with the addition of nonverbal cogni-
tion to the model, indicating that the effect of risk status
on receptive language is relatively specific. For expressive
language, however, the effect of ASD-risk status was no
longer significant when accounting for nonverbal cogni-
tion, in line with previously described interrelationships
between general cognitive abilities and language [84–86].
These findings further support separating receptive and
expressive language in behavioral genetic analyses and
imply that therapies targeting domain-general abilities
may improve language in children with genetic liability for
ASD, as shown in emerging work for several populations
with language impairment [100–103].

Early social and language abilities are dissociated in high-
risk toddlers without ASD
Because disrupted social and language development
co-occur in ASD, we evaluated the relationship between
language and autistic social deficits, based on the social
affect score on the ADOS. As mentioned previously, the
contribution of ASD risk status to both receptive and ex-
pressive language remained significant even when including
social affect scores in the regression models. This suggests
that heritable factors influencing early language and core
autistic social features in the HR-noASD group are partially
independent and that language deficits are unlikely to be
purely secondary to ASD-related social deficits.
These analyses additionally revealed an interaction

between risk group and social affect score, in which
LR-noASD and HR-noASD siblings exhibited distinct
relationships between language and social deficits. First,
LR-noASD siblings displayed a negative relationship
between levels of ASD-related social deficits and language.
This concurred with a previously reported negative correl-
ation between autistic traits and language in a general
population toddler sample [104], confirming that the social
affect score captured adequate variation in the low-risk
group. In contrast, HR-noASD siblings showed no correl-
ation between language and social domains. Like
LR-noASD siblings, however, they showed moderate corre-
lations between language and nonverbal cognition, redu-
cing the likelihood that the dissociation of language and
social domains was an epiphenomenon of broadly altered
development.
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A dissociation of early social and language abilities is
reminiscent of the phenotype for the prior diagnosis of
Asperger’s Disorder—in that case, early language devel-
opment was relatively intact in the presence of autistic
social impairment. At the same time, recent studies of
older high-risk individuals without ASD have revealed
an association of greater social deficits with lower lan-
guage competency [35, 105]. In sum, while our findings
show that genetic liability for ASD tracks with early lan-
guage deficits, heritable factors for language and autistic
social symptoms appear partially independent, and these
phenotypes may not show steady covariation throughout
development in HR-noASD siblings. Possible explana-
tions include that some language-related social abilities
are not measured by the ADOS, that language deficits
may precede some ASD-related social deficits, or that,
as has been described for specific language impairment,
longstanding limitations in communication could reify a
relationship between language and social function over
time [106]. Although language impairment is no longer
considered a core diagnostic feature of ASD in DSM-5
[107], behavioral genetic studies of trajectories of
language development in conjunction with social devel-
opment remain important to maximize the discovery of
genetic contributors to ASD.

Limitations
While these findings support ASD-related language endo-
phenotypes at an early and prolific stage of language devel-
opment, we note that associating language differences in
HR-noASD siblings with specific genetic risk factors is re-
quired for direct confirmation of these endophenotypes.
The results are also cross-sectional and the relationship of
these early language differences to later outcomes warrant
future study. Other work has reported quantitative lan-
guage differences in high-risk infants [83], but studies of
older HR-noASD siblings are mixed regarding the stability
of language differences [22, 28, 108, 109], and further
investigation is needed to determine the continuity of lan-
guage deficits in this group. Resolution of language deficits
in HR-noASD siblings would suggest that manifestations
of genetic liability for ASD could occur transiently as part
of a developmental process like language acquisition,
consistent with the possibility of “state-dependent”
developmental endophenotypes.
Although ASD diagnoses are generally stable by age

24 months [54–57], with recent work showing 82.3%
positive predictive value from 24 to 36 months [110],
there is also variation in the early development of ASD
[110–112], which could affect the composition of the
HR-noASD group and consequently, the magnitude of
risk-related differences. We additionally acknowledge
that in keeping with the infant sibling study design, con-
trol groups were comprised of low-risk participants, who

in some cases exhibited relatively elevated mean standard-
ized language scores, maternal education, and socioeco-
nomic status. Similar characteristics were also observed in
some of the HR-noASD samples as well, suggesting
possible enrollment bias, as frequently occurs in studies
requiring high participant engagement. However, this
design allowed analyses of extensive developmental assess-
ments generally unavailable in non-clinical samples, and
the similar prevalence of language delay for pooled
LR-noASD siblings and the general population, 5.2% ver-
sus 6% [113], supports the comparability of LR-noASD
siblings. Finally, larger, more diverse samples than those
presented here would be necessary to address potential
heterogeneity and subtyping (e.g., simplex versus multi-
plex families); nevertheless, it is notable that the signal for
decreased language function in HR-noASD siblings was
appreciable in spite of this known heterogeneity.

Conclusions
The detection of increased language delay in HR-noASD
toddlers, both in existing literature and IBIS data, high-
lights the capacity to reliably measure heritable, clinically
relevant markers of ASD risk during early development.
At a practical level, the consistency of the findings across
samples supports the utility of incorporating language
metrics into early assessments, particularly for children at
familial risk of ASD. Further characterization of the nature
and continuity of language deficits in larger samples of
ASD probands and their unaffected siblings is warranted
(1) to refine genetically informative language phenotypes,
taking into account receptive and expressive language, as
well as potential contributions of social responsiveness,
and (2) to resolve how deviations in early language devel-
opment correspond to later ASD-related outcomes, e.g.,
pragmatic language deficits, which also occur more fre-
quently in HR-noASD siblings [114]. Such studies would
provide a valuable opportunity to clarify the heterogeneity
of the genetic architecture ASD as well as the role and
timing of language-based interventions.
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