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Abstract

Background: Neurodevelopmental disorders such as 16p11.2 syndrome are frequently associated with motor
impairments including locomotion. The lack of precise measures of gait, combined with the challenges inherent
in studying children with neurodevelopmental disorders, hinders quantitative motor assessments. Gait and
balance are quantifiable measures that may help to refine the motor phenotype in 16p11.2. The characterization
of motor profile is useful to study the trajectories of locomotion performance of children with genetic variants
and may provide insights into neural pathway dysfunction based on genotype/phenotype model.

Methods: Thirty-six children (21 probands with 16p11.2 deletion and duplication mutation and 15 unaffected
siblings), with a mean age of 8.5 years (range 3.2–15.4) and 55% male, were enrolled. Of the probands, 23%
(n = 6) had a confirmed diagnosis of autism spectrum disorder (ASD) and were all male. Gait assessments
included 6-min walk test (6MWT), 10-m walk/run test (10MWR), timed-up-and-go test (TUG), and spatio-temporal
measurements of preferred- and fast-paced walking. The Pediatric Evaluation of Disability Inventory-Computer Adaptive
Tests (PEDI-CAT), a caregiver-reported functional assessment, was administered. Measures of balance were calculated
using percent time in double support and base of support. Analyses of the six children with ASD were described separately.

Results: Thirty-six participants completed the protocol. Compared with sibling controls, probands had significantly lower
scores on the 6MWT (p = 0.04), 10MWR (p = 0.01), and TUG (p = 0.005). Group differences were also identified
in base of support (p = 0.003). Probands had significantly lower PEDI-CAT scores in all domains including the
mobility scale (p < 0.001). Using age-matched subsamples, the ASD and non-ASD genetic variant groups had
larger base of support compared to the controls. In the fast-paced condition, all participants increased their velocity,
and there was a corresponding decrease in percent time in double support compared to the preferred-pace condition in
all participants. Only the ASD group presented with upper limb arm/hand stereotypies.

Conclusions: Children with 16p11.2, with and without ASD, present with balance impairment during locomotion
activities. Probands performed worse on functional assessments, and quantitative measures revealed differences
in base of support. These results highlight the importance of using precise measures to differentiate motor dysfunction
in children with neurodevelopmental disorders.
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Background
Neurodevelopmental disorders are characterized by a
wide range of impairments with broad severity level.
Among the affected developmental functions, motor
impairments represent the earlier and most visible signs
[1, 2]. Yet, the motor phenotypes are often difficult to
quantify precisely in children with neurodevelopmental
disorders especially when accompanied by high behav-
ioral comorbidities such as those with autism spectrum
disorder (ASD) [3] who may display low compliance,
distractibility, and poor imitation skills. These behavioral
challenges often confound traditional command-based
motor assessments. With recent technological advances,
many gene-based syndromes have been identified that
provide ways to reduce phenotypic heterogeneity [4, 5].
Focusing on a homogenous cohort of children with
selected genetic conditions such as 16p11.2, the most
frequent etiologies for ASD [2, 6–8] have led to fruitful
genotype/phenotype findings [9–12]. Children with
16p11.2 mutation (deletion or duplication) present with
a range of neurodevelopmental impairments affecting
mostly cognitive (i.e., language) and behavioral (attention
deficit, autism spectrum disorder) and motor (i.e., coord-
ination) functions [13–15]. The prevalence of comorbid
diagnosis of autism spectrum disorder in individuals
with 16p11.2 deletion has been estimated between 20
and 33% [14, 16]. Speech articulation, limb and trunk
hypotonia, abnormalities of agility, and seizures have
been reported in a large cohort of carriers with both
16p11.2 deletion and duplication [17]. Interestingly, indi-
viduals with 16p11.2 deletion present more commonly
with macrocephaly, whereas individuals with 16p11.2
duplication present with microcephaly. Overall, studies
suggest children with duplications present with milder
impairments [18]. In addition to the neurological pheno-
types, studies have reported an unexplained high preva-
lence of obesity [19], which may be related to level of
physical activity. Despite the high prevalence of motor
impairment in children with 16p11.2 with and without
ASD, the majority of studies so far have relied on parent
questionnaires to study the motor profile [17, 20]. The
lack of quantitative performance measures, combined
with the inherent challenges in studying children with
neurodevelopmental disorders, hinders objective motor
assessments. Yet, children with genetic variants such as
16p11.2 constitute cohorts with homogenous etiologies
that allow for focused motor assessment to offer insights
into neural pathway dysfunction such as the cerebellum
or the basal ganglia, responsible for motor abnormalities,
and that have been identified in other neurodevelopmen-
tal disorders such as ASD [21, 22].
In this descriptive study, we used an instrumented

walkway and a battery of standardized quantitative mea-
sures of locomotion (gait) and mobility (functionality) to

compare 16p11.2 probands with and without a diagnosis
of ASD to a group of non-affected siblings.

Methods
Children included in this study were recruited as part of
a large research family meeting that provided the genetic
(16p11.2 deletion/duplication) and behavioral diagnosis
(ASD) based on prior evaluations. Informed consent was
obtained from all individual participants’ caregivers in-
cluded in the study. The experimental protocol con-
formed to the Institutional Review Board of Columbia
University Irving Medical Center and followed their
ethical guidelines. Thirty-six children (21 probands
with 16q11.2 mutation, deletion (n = 18), or duplica-
tion (n = 3) and 15 unaffected siblings), with a mean
age of 8.5 years (range 3.2–15.4), 55% male, and 23%
incidence of ASD, completed the study. Measures pre-
viously used in other pediatric neurodevelopmental
and neuromuscular disorders were used to characterize
motor function [23–26]. Gait assessments included 6-
min walk test (6MWT), 10-m walk/run test (10MWR),
timed-up-and-go test (TUG), and spatio-temporal
measurements of preferred- and fast-paced gait. Chil-
dren were required to walk in 10-m bouts across the
GAITRite™ instrumented walkway to calculate tem-
poral and spatial gait parameters (velocity and stride
length). Measures of balance using percent time in
double support (%) and base of support (cm) from the
walkway were collected during these assessments. Sub-
sequently, gait data from the six children diagnosed
with ASD were compared with six age-matched non-
ASD genetic variant and six non-ASD sibling controls.
The Pediatric Evaluation of Disability Inventory-Computer
Adaptive Test (PEDI-CAT) [27], a caregiver-questionnaire
with a long history of application in developmental medi-
cine, was administered as a measure of daily living motor
functionality. The PEDI-CAT is comprised of three
functional domains: Daily Activities, Mobility, and
Social/Cognitive, and an additional Responsibility
domain related to the extent to which the caregiver or
child takes responsibility for managing complex,
multi-step life tasks. Questions in the (1) Daily Activ-
ities domain relate to household maintenance (e.g.,
eating, dressing); (2) the Mobility domain evaluates
the child ability to move in different environments
such as in home and at school (e.g., standing, run-
ning); (3) the Social/Cognitive domain includes an
assessment of communication, interaction, safety be-
havior, play, attention, and problem solving; and (4)
the Responsibility domain considers the extent to
which the child is able to seek assistance as needed
and direct others in order to accomplish tasks that en-
able independent living.
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Statistical analyses
Data were analyzed in MATLAB R2017a [28]. To ac-
count for age, gender, and height differences, distance
walked in meters on the 6MWT was expressed as a
percent of predicted based on published norms [29].
Descriptive statistics are shown as median (interquartile
range) and frequencies [% (n)]. Given the sibling-matched
control design used in this study, the assumption of inde-
pendence was expressly assessed for all outcome measures
of interest using Spearman’s correlations within clusters of
sibling pairs (n = 10). All measures included in the following
analyses met the requisite assumption of independence
(p > 0.05). Associations between PEDI-CAT subdomain
scores and all gait and functional assessment scores were
also separately evaluated within each group (i.e., children
with and without the genetic variant) using Spearman cor-
relation coefficients. Preliminary analyses revealed that gait
parameters tended to be non-normally distributed in this
sample. Resultantly, differences in gait parameters between
children with genetic variant 16p11.2 and their siblings
were tested using a Wilcoxon rank sum test, and the rank
sum test statistic (W) was reported. The Wilcoxon rank
sum test is appropriate for detecting differences in medians
between two independent samples, especially when data do
not follow a normal distribution [30]. All models met the
assumptions of the tests, and the significance level was set
at α = 0.05.

Results
Clinical characteristics of children with and without
genetic variant 16p11.2 are shown in Table 1. Proband

children had longer performance times on the TUG
(W = 408; p = 0.009) and 10MWR (W = 460; p = 0.02)
and had lower percent of predicted distances (i.e.,
walked shorter distance) on the 6MWT (W = 230; p <
0.001) than children without the genetic variant. As
shown in Table 2, probands had a wider base of support
in both walking conditions (W = 478; p = 0.004). Pro-
bands had significantly lower scores in all domains of
the PEDI-CAT, including the Mobility subscale com-
pared to siblings (W = 287; p = 0.001). In proband
children, caregiver-reported scores for Daily Activity
subscale were positively associated with the 6MWT (ρ =
0.49, p < 0.05). There was no association in proband chil-
dren and siblings between caregiver reported scores on
PEDICAT subscales (Daily Activities, Mobility, Social/
Cognitive, and Responsibility) and other quantitative
measures of gait (6MWT percent of predicted distance,
10MWR, and base of support) and function (TUG)
(p > 0.05).

Discussion
For the first time, this study reports the results of a de-
tailed battery of gait assessments to characterize motor
performance in children with 16p11.2 deletion or dupli-
cation. We found that probands have reduced perform-
ance on functional motor tasks and lower endurance
compared to their non-affected siblings. Despite the high
prevalence of motor comorbidities in 16p11.2 probands,
so far, studies have used parent report or global functional
measures [17, 32] to assess motor profiles. However,

Table 1 Characteristics of proband children with 16p11.2 and
their unaffected siblings

Variable Genetic variant
(n = 21)

Unaffected siblings
(n = 15)

Sex (n)

Female 11 6

Age 9.3 (5.4) 7.9 (7.8)

BMI percentilesa, % (n)

Underweight 10% (2) 7% (1)

Normal weight 33% (7) 73% (11)

Risk for overweight 24% (5) 13% (2)

Overweight 33% (7) 7% (1)

PEDI-CAT

Daily Activities 34 (20.5) 47 (9.3)

Mobility 34 (26.8) 49 (11.3)

Social/Cognitive 34 (13.8) 46 (6.8)

Responsibility 39 (13.0) 50 (14.3)

Table values are medians (interquartile range) and frequencies % (n)
Abbreviations: BMI body mass index, PEDI-CAT Pediatric Evaluation of Disability
Inventory-Computer Adaptive Test normative standard scores
aCenters for Disease Control BMI percentiles (Ogden 2002 [31]).

Table 2 Differences in gait parameters between proband
children with 16p11.2 and their unaffected siblings

Variable Genetic variant Unaffected siblings

Timed-up-and-go test (sec) 4.81 (1.4) 4.19 (1.3)*

10-m walk/run test (sec) 3.52 (1.0) 2.91 (0.7)*

6-min walk test (meters) 429 (72.5) 496 (201.3)

6-min walk test (% predicted) 71.6 (11.6) 88 (11.1)***

Preferred-pace walking

Velocity (cm/sec) 114.5 (18.4) 130.4 (31.6)

Stride length (cm) 112.5 (24.0) 110.6 (49.2)

Base of support (cm) 10.3 (4.7) 6.9 (2.4)**

Double support time (%) 22.9 (6.1) 20.0 (4.7)

Fast-pace walking

Velocity (cm/sec) 198.8 (50.1) 192.7 (55.0)

Stride length (cm) 133.8 (36.0) 127.7 (65.6)

Base of support (cm) 10.0 (5.1) 6.7 (2.4)*

Double support time (%) 14.9 (5.6) 11.9 (7.2)

Significant differences in gait parameters between children with and without
genetic variant 16p.11.2. Descriptive values are medians (interquartile range)
Abbreviations: m meter, min minute, cm centimeters, sec seconds
p < 0.05 (*), p < 0.01 (**), p < 0.001(***)
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parental reports do not provide detailed characterization
of motor performance and lack sensitivity to change
needed for outcome studies or clinical trials [15].
Here, we used a comprehensive protocol to compare

gait and balance in probands and their unaffected sib-
lings. We identified differences in markers of balance
and standardized functional assessments. Children with
16p11.2 mutation demonstrated impaired balance and
slower speed during walking and running tasks. Reduced
performance on clinical assessments was also identified
in parent reports of lower functional abilities using stan-
dardized questionnaires. Furthermore, reduced endurance
was associated with parents’ responses about their child’s
daily activities performance. This study provides initial
support of these assessments for use in longitudinal nat-
ural history studies and clinical trials in 16p11.2.
Detailed characterization of gait is necessary to quantify

the severity and the trajectory of the motor impairments.
More importantly, it sheds light on motor pathways that
may be involved in known copy number variant genetic
conditions such as 16p11.2, the most frequent genetic eti-
ology of ASD. In view of the significant heterogeneity in
the cognitive, behavioral, and motor phenotype of children
with neurodevelopmental disorders including ASD, the
identification of quantifiable features to differentiate their
motor phenotypes is highly valuable. Furthermore, this
approach may prove useful in new genotype-phenotype
studies using motor performance as a target [4].
Impaired locomotion and possibly obesity which was

commonly reported among the 16p11.2 group relative to
their unaffected siblings may influence their engagement
in a range of physical activities and in turn affect their
social life and wellness. Furthermore, recent studies
focusing on interactions between motor functions and
social development in neurodevelopmental disorders
highlight increased screen time, obesity, and sedentary
lifestyles [19] predisposing these children to other be-
havioral comorbidities. However, our results using the
PEDI-CAT, a useful parent report to measure daily ac-
tivity function including social and cognitive abilities,
may not necessarily capture the entire social domain. In
order to better understand the influence of motor func-
tion on social development in this population, a more
detailed and direct assessment of social skills is needed.
Yet, in general, developmental studies point to the bene-
fit of engaging children with motor and cognitive im-
pairments in physical activities in an adaptive way to
allow them to thrive socially and physically. Future stud-
ies in 16p11.2 and other related disorders will need to be
designed to assess more precisely how the motor profile
affects the level of physical activity and the risk for these
comorbidities.
We recognize the following limitations of this study,

including a small sample size of selected families and the

use of siblings as control groups instead of unrelated
typically developing children. The small subgroup of six
probands with a confirmed diagnosis of ASD was not
large enough to examine the specific relationship be-
tween ASD and motor function; however, it was consist-
ent with the reported 30% prevalence of ASD in 16p11.2
[16, 33]. Our sample of convenience did not allow for
studying probands with 16p11.2 duplication and deletion
separately. Because there are reported findings showing
phenotypic differences between groups, future studies
should examine these two genotypic groups separately
[6, 16, 17, 34]. In addition, future assessments of fine
and gross motor coordination using wearable technologies
as well as clinical measures of cognitive and social functions
may provide more detailed phenotypic characterization, as
well as a better understanding of inter-individual variability.
These types of results would, in turn, contribute to the
development of more targeted interventions.

Conclusions
Our study reports quantitative gait measures together
with parents’ measures of functionality [10, 35] and as
such provides novel characterization of the motor
impairments in children with 16p11.2. These findings
demonstrate the applicability of our protocol and sup-
port its utility to identify and define motor dysfunction
in children with neurodevelopmental disorders despite
their behavioral challenges.
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