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Abstract 

Background: Phelan McDermid syndrome (PMS) is a neurogenetic condition associated with a high prevalence of 
intellectual disability (ID) and autism spectrum disorder (ASD). This study provides a more comprehensive and quanti‑
tative profile of repetitive behaviors within the context of ID seen with the condition.

Methods: Individuals age 3–21 years with a confirmed PMS diagnosis participated in a multicenter observational 
study evaluating the phenotype and natural history of the disorder. We evaluated data collected from this study per‑
taining to repetitive behaviors from the Repetitive Behavior Scales‑Revised (RBS‑R).

Results: There were n = 90 participants who were part of this analysis. Forty‑seven percent (n = 42/90) were female, 
and the average age at baseline evaluation was 8.88 ± 4.72 years. The mean best estimate IQ of the cohort was 26.08 
± 17.67 (range = 3.4–88), with n = 8 with mild ID (or no ID), n = 20 with moderate ID, and n = 62 with severe‑pro‑
found ID. The RBS‑R total overall score was 16.46 ± 13.9 (compared to 33.14 ± 20.60 reported in previous studies of 
ASD) (Lam and Aman, 2007), and the total number of items endorsed was 10.40 ± 6.81 (range = 0–29). After statisti‑
cal correction for multiple comparisons, IQ correlated with the RBS‑R stereotypic behavior subscale score (rs = − 0.33, 
unadjusted p = 0.0014, adjusted p = 0.01) and RBS‑R stereotypic behavior total number of endorsed items (rs = − 
0.32, unadjusted p = 0.0019, adjusted p = 0.01). IQ did not correlate with any other RBS‑R subscale scores.

Conclusions: The RBS‑R total overall score in a PMS cohort appears milder compared to individuals with ASD charac‑
terized in previous studies. Stereotypic behavior in PMS may reflect cognitive functioning.
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Background
Phelan-McDermid syndrome (PMS), a genetic cause of 
intellectual disability (ID) and autism spectrum disorder 
(ASD), is a condition of abnormal synaptic transmis-
sion caused by a pathogenic variant affecting SHANK3, 

either through an intragenic variant or a 22q13 deletion. 
Affected individuals present with a broad spectrum of 
somatic and neurobehavioral features, including facial 
and systemic anomalies, global developmental delay lead-
ing to ID often in the severe or profound range, absent or 
delayed speech, and generalized hypotonia [1]. Reports 
thus far indicate that almost all individuals with PMS 
meet diagnostic criteria for ID. More than 50% of indi-
viduals with PMS meet diagnostic criteria for ASD [2, 
3] and up to 2% of individuals with ASD have SHANK3 
haploinsufficiency [4, 5]. Given the marked presence of 
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severe to profound ID in PMS and the difficulties of diag-
nosing ASD in this context [6], further investigation of 
how ASD symptoms manifest and relate to cognitive abil-
ity in PMS is warranted.

Prior studies of the behavioral phenotype of PMS have 
focused broadly on the behavioral profile, including ASD 
symptomatology. Despite the caveat that many indi-
viduals with PMS have mental ages below the minimum 
required for ASD measures to be considered valid [7], 
several studies have implemented such measures in this 
population. In one study that administered the Autism 
Diagnostic Interview-Revised (ADI-R) to a group that did 
not have mental ages established to determine validity of 
the measure, 90% of individuals with PMS had deficits in 
social-communication above the diagnostic cutoff estab-
lished for this measure, while 55% were above the cutoff 
for restricted, repetitive patterns of behavior, interests, or 
activities [2]. However, scores on the ADI-R did not pre-
dict a clinical diagnosis of ASD in a regression model [2]; 
instead, ASD diagnosis was predicted by impaired social-
ization scores on the Vineland Adaptive Behavior Scales, 
Second Edition (Vineland-II). There is a great need to 
better characterize behaviors that are characteristic of 
ASD and ID to a lesser extent [8, 9] in PMS, especially 
due to the severity of ID in this population. While the 
need to appropriately measure ASD symptoms in genetic 
conditions characterized by ID has been emphasized, 
much of this critique has focused on the social-commu-
nication deficits in these conditions and not repetitive 
behaviors. Although previous studies suggest a relation-
ship between repetitive behaviors and IQ in ASD [10–13] 
and other conditions associated with ASD and ID, such 
as fragile X syndrome (FXS) [14], it will be valuable to 
determine if this relationship is maintained in individuals 
with severe to profound ID or if there is a unique profile 
of repetitive behaviors in PMS.

Repetitive behaviors may impact learning and social 
development [15, 16] and, in the case of self-injury, 
threaten the health and safety of affected children 
through risk of physical harm and infection [17]. Thus, 
repetitive behaviors are a target for treatment not only 
for ASD [18] but also for conditions associated with ID 
[19–21] more generally. Better characterization of the 
restricted and repetitive behavior (RRB) profile of PMS is 
needed in order to develop hypotheses regarding which 
interventions may be most effective in this population.

Using ASD assessment tools, some studies have begun 
to highlight important differences between the repetitive 
behavior profile in idiopathic ASD and specific genetic 
conditions such as PMS. Certain repetitive behaviors, 
namely stereotyped behaviors, are commonplace in 
both idiopathic ASD and in conditions characterized by 
varying degrees of ID [8, 22]. In PMS, other repetitive 

behaviors occur less frequently, if at all [3]. For exam-
ple, unusual preoccupations, resistance to changes in the 
environment, and unusual attachments to objects are 
less commonly reported in PMS based on the ADI-R [3]. 
However, ASD assessment tools such as the ADI-R and 
Autism Diagnostic Observation Schedule (ADOS) do not 
capture the full profile of repetitive behaviors that pre-
sent in these populations. Instead, assessment tools such 
as the Repetitive Behavior Scale-Revised (RBS-R) [23] 
or the Repetitive Behavior Questionnaire [24] allow for 
more thorough characterization of these heterogenous 
behaviors, which vary in prevalence and profile across 
other genetic syndromes [22]. Additionally, through 
measures such as the RBS-R, RRBs have been shown to 
psychometrically fall into subtypes, which are thought 
to comprise separate constructs. Often these are divided 
into higher-order and lower-order RRBs, which are pro-
posed to have different underlying etiologies, but can be 
further split into more specific categories of behavior (see 
[25, 26] for a summary of these various factor structures). 
With this in mind, profiles of RRBs in ASD and ID have 
been described through these different RRB subtypes to 
better elucidate the variable profile of RRBs presented. 
One such study recently utilized the Repetitive Behavior 
Questionnaire as part of survey data collection compar-
ing a sample of PMS to fragile X syndrome, Down syn-
drome, and idiopathic ASD, finding lower levels of total 
repetitive behavior in PMS compared to idiopathic ASD 
and fragile X. This difference was largely attributable to 
relatively lower compulsive behavior and insistence on 
sameness in PMS compared to these disorders, while 
individuals with PMS exhibited comparable levels of 
repetitive motor movement [27]. However, as a survey, 
this study was limited in its ability to factor in level of ID 
in its analysis, which could account for the consistency 
in stereotyped behaviors seen across diagnostic groups. 
Indeed, previous studies indicate that IQ is specifi-
cally associated with stereotypic behaviors [10–13]. For 
this reason, further exploration of the profile of repeti-
tive behavior in PMS using a measure of RRB as part of 
a comprehensive behavioral phenotyping protocol is 
warranted.

The current study aimed to characterize repetitive 
behaviors in PMS, as well as the cognitive ability that 
contextualizes them, using parent-reported measures 
and developmental testing. In 2015, the Developmental 
Synaptopathies Consortium was established to initiate 
a large multicenter study with a central goal of track-
ing the natural history of PMS and discovering poten-
tial phenotypic and genotypic factors that contribute to 
diverse patient outcomes. In this analysis, we focused 
our efforts on analyzing data from the RBS-R, a vali-
dated parent-reported instrument of repetitive behavior, 
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to characterize repetitive behaviors in this population. 
Given that stereotyped behaviors are related to ID, and 
PMS is characterized by severe ID, we expect that stereo-
typed behaviors will be elevated in PMS, but other types 
of repetitive behavior which have not been related to 
level of ID will be less severe (e.g., compulsive behavior, 
ritualistic and sameness behaviors). Additionally, based 
on prior data linking stereotyped behaviors to IQ [10–
13], we hypothesize that in PMS, the degree of repeti-
tive behaviors, and particularly stereotyped behaviors, is 
directly related to ID severity.

Methods
Study participants
We performed a cross-sectional analysis of baseline data 
from 90 individuals with PMS enrolled in a prospective, 
multi-site, observational, cohort study evaluating the 
phenotype and natural history of PMS (Clini calTr ials. 
gov NCT02461420). English speaking males or females, 
ages 3–21 years, with pathogenic chromosomal dele-
tions or pathogenic variants causing happloinsufficiency 
of the SHANK3 gene, were eligible for the study. Partici-
pant recruitment was from PMS clinics across the USA, 
in coordination with the PMS Foundation. Participants 
underwent in person assessments by the study team at 
the various sites of this multisite study, after appropriate 
consent took place on this study approved by a central-
ized IRB at Boston Children’s Hospital. Assessments were 
conducted by neuropsychologists and other members 
qualified to administer assessments as designated below.

Behavioral assessments
Repetitive Behavior Scale–Revised (RBS‑R)
Caregivers completed the RBS-R [23], a caregiver-
reported questionnaire with 43 items focusing on 
restricted and repetitive behaviors. Each item has a pos-
sible integer score from 0 to 3: 0 = the behavior does not 
occur; 1 = the behavior occurs and is a mild problem; 2 
= the behavior occurs and is a moderate problem; 3 = 
the behavior occurs and is a severe problem. The 43 items 
in the instrument span six subscales: stereotyped behav-
ior subscale, self-injurious behavior subscale, compulsive 
behavior subscale, ritualistic behavior subscale, sameness 
behavior subscale, and restricted behavior subscale. Each 
of the six subscales has two corresponding values: one 
for the total number of subscale items endorsed, and one 
for the sum of all the scores within the subscale. Impor-
tantly, the original version of this measure, the Repetitive 
Behavior Scale, included a validation sample of individu-
als with ID. Specifically, the sample included an ASD + 
ID and ID-alone comparison group, each noted to consist 
of a majority of individuals with severe or profound ID, 

with only two participants per group with IQ outside of 
the severe to profound ID range [8].

Lam and Aman (2007) validated the RBS-R in individu-
als with ASD ages 3–48 years (whose parents/caretakers 
were members of the South Carolina Autism Society) 
and refactored the original six subscale instrument into 
five subscales: stereotypic behavior subscale, self-injuri-
ous subscale, compulsive subscale, ritualistic/sameness 
subscale, restricted interests subscale [28]. This study did 
not indicate the level of ID in their sample, but did note 
the education placement for their sample (57.7% “spe-
cial class in a regular school;” 16.6% “regular class in a 
regular school;” 14.7% “special school;” 9.4% “other”). In 
this refactoring, five single items did not load into one of 
these five subscales, resulting in a total of 38 single items 
out of the 43 in the original RBS-R. We use this refac-
tored formulation of the RBS-R in our analysis. The range 
of possible values for each subscale score is 0 to 3 mul-
tiplied by number of items within that subscale. There 
are overall scores for the total number of items endorsed 
(possible range = 0–38 in the refactored version) and the 
sum of all the item scores (overall total score; possible 
range = 0–114 [38 items × max score of 3] in the refac-
tored version).

Vineland Adaptive Behavior Scales–Second Edition 
(Vineland‑II)
Caregivers were interviewed using the Vineland Adap-
tive Behavior Scales, Second Edition (Vineland-II), which 
is a standardized tool to evaluate adaptive behavior per-
taining to the domains of communication, socializa-
tion, daily living skills, and motor skills [29]. Domain 
scores generate an overall adaptive behavior composite 
standard score. The study used the interview form of the 
assessment.

Autism spectrum disorder consensus diagnosis
Individuals received a diagnosis of ASD based on Diag-
nostic and Statistical Manual for Mental Disorders, Fifth 
Edition criteria [30], informed by the ADI-R [31], Autism 
Diagnostic Observation Schedule, Second Edition 
(ADOS-2) [32], and clinical judgment, which included 
ratings of clinical certainty.

IQ
For each participant, we generated a best estimate IQ 
based on standard scores on IQ tests or ratio IQ estimates 
in those whose scores on cognitive tests were out-of-
range. We used a hierarchy of tests, including the Mul-
len Scales of Early Learning [33] and the Stanford Binet 
[34]. This framework has been previously established for 
use in individuals with severe-profound ID [7]. IQ scores 
from the Stanford Binet were used for participants who 

http://clinicaltrials.gov
http://clinicaltrials.gov
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could achieve a basal score on this measure; developmen-
tal quotients (mental age divided by chronological age) 
were used for participants who were administered the 
Mullen Scales of Early Learning due to the high rate of 
this measure being administered out-of-age-range (above 
chronological age of 5 years 8 months) or, if in age range, 
receiving a standard score at the basal for the measure. 
For the purpose of this study, ID groupings were catego-
rized as (1) mild ID (best estimate IQ ≥ 50), (2) moderate 
ID (best estimate IQ of ≥ 35 and < 50), (3) severe-pro-
found ID (best estimate IQ < 35).

Statistical analysis
For the analysis, we excluded individuals with incomplete 
baseline behavioral assessments (specifically missing 
best estimate IQ, RBS-R, and Vineland-II [apart from the 
motor domain]). We used descriptive analyses to present 
means and frequencies (standard deviations following 
means are denoted with plus-minus sign).

First, to provide a description of the repetitive behav-
ior profile in PMS, descriptive statistics on the number 
of RBS-R items endorsed (score of > 0), RBS-R subscale 
scores, and RBS-R total score in the PMS cohort are pro-
vided. Next, to address the hypothesis that RRB severity 
in PMS is reflective of level of cognitive functioning, we 
conducted a series of Spearman rank-order correlations 
between RBS-R subscale scores and IQ. We used Wil-
coxon rank-sum test to examine IQ across sex; logistic 
regression model to compare ASD diagnosis with IQ; and 
Spearman rank correlation to correlate IQ with age and 
VABS-II scores. To account for multiple comparisons, 
we used Benjamini-Hochberg (BH) false discovery rate 
procedure separately for each instrument where the total 
number of statistical comparisons was ≥ 10. We chose q 
= 0.05. The ± sign indicates standard deviation.

Results
Demographic and clinical characteristics
There were 90 participants with complete behavioral 
assessment data who were part of this analysis. Forty-
seven percent (n = 42/90) were female, and the aver-
age age at baseline evaluation was 8.88 ± 4.72 years. In 
terms of race, 83% of participants were white, 9% were 
Asian, 3% were African American, 1% were American 
Indian or Alaskan native, and 3% had unknown/unre-
ported race. The mean best estimate IQ of the cohort was 
26.08 ± 17.67 (range = 3.4–88), with n = 8 with mild ID 
(or higher), n = 20 with moderate ID, and n = 62 with 
severe-profound ID. Fifty-nine percent of the cohort (n = 
51/86) had a diagnosis of ASD; the highest rate of ASD 
occurred in the severe-profound ID group (73%; n = 
43/59), and the lowest rate (14%; n = 1/7) occurred in the 
mild ID or higher group. See Table 1.

RBS-R item-level prevalence and severity
The mean total number of items endorsed was 10.4 ± 
6.81 (range = 0–29), approximately 26% of the items 
using the 38-item Lam and Aman (2007) scoring [28]. For 
each participant, the average number of RBS-R subscales 
containing at least one endorsed item was 3.4 ± 1.5 
(range = 0–5). Among the items in the refactored RBS-
R, there were four items associated with a prevalence 
(as determined by whether the item score was either 0 
or at least 1) above 50%: item 3 [68%; “hand/finger (flaps 
hands, wiggles or flicks fingers, claps hands, waves or 
shakes hand or arm)”]; item 36 [64%; “likes the same CD, 
tape, record, or piece of music played continually; likes 
same movie/video or part of movie/video”]; item 37 [56%; 
“resists changing activities; difficulty with transitions”]; 
and item 5 [52%; “object usage (spins or twirls objects, 
twiddles or slaps or throws objects, lets objects fall out of 
hands)”]. RBS-R item 3 and item 5 are within the stereo-
typed behavior subscale; item 36 is within the restricted 
interests subscale; and item 37 is within the ritualistic/
sameness subscale.

RBS-R total and subscale scores
On the RBS-R, the mean total overall score was 16.46 ± 
13.9. Additionally, the RBS-R subscale scores from this 
PMS sample are summarized alongside scores previous 
studies of individuals with and without ID and/or ASD to 
provide context for how RRBs in PMS compare to other 
conditions (Fig. 1). Two prior cohorts included in the fig-
ure have focused on children with ASD [n = 267–307, 
mean IQ not reported [28]; n = 128, mean IQ = 59 [25]]; 
developmental delay [n = 44, mean IQ = 61 [25]]; and 
typical development [n = 59, mean IQ = 109 [25]]. Gen-
erally, scores in the PMS cohort appear elevated across all 
subscales compared the typical development cohort from 
Joseph et al. (2013) [25] but lower than the ASD groups 
from Joseph et al. (2013) [25] and Lam and Aman (2007) 
[28].

Relationship between RBS-R scores and ID
We conducted Spearman’s rank order correlations com-
paring IQ versus RBS-R subscale scores, subscale num-
ber of endorsed items, overall total score, and overall 
total number of endorsed items. After statistical correc-
tion for multiple comparisons, IQ correlated with the 
RBS-R stereotypic behavior subscale score (rs = − 0.33, 
unadjusted p = 0.0014, adjusted p = 0.01) and RBS-R ste-
reotypic behavior total number of endorsed items (rs = 
− 0.32, unadjusted p = 0.0019, adjusted p = 0.01), but 
not with any other RBS-R subscale scores. See Table  2. 
In a binomial generalized linear model of ASD diagnosis 
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versus RBS-R stereotypic behavior subscale score, with 
IQ as a co-variate, coefficient of the RBS-R term was not 
statistically significant (estimate = 0.11, p = 0.061).

Discussion
On average, there is a full spectrum of repetitive behav-
iors in PMS relative to previous reports of typical devel-
opment [25], but questions remain about whether the 
repetitive behavior profile in PMS is different from that 
of other neurodevelopmental disorders, and whether the 
severity of RRBs seen in PMS is attributable to the pro-
found ID seen in this population. The RBS-R total overall 
score was 16.46 ± 13.85, which appears milder compared 
to individuals with ASD that have been characterized in 
previous studies. In participants with ASD (whose data 
served as the basis for the RBS-R refactoring used in 
this analysis), the mean (refactored) RBS-R total score 
was 33.14 ± 20.6 [28], nearly double the total RBS-R 
score in our cohort. However, when subscale scores dif-
ferences between the Lam and Aman (2007) ASD group 

[28] and the PMS sample are compared (where % change 
= (PMS – ASD)/ASD), it is evident that the difference in 
total score could be driven largely by a relative absence 
of ritualistic/sameness behaviors (∆ = − 7.2, % change = 
− 61%) and compulsive behavior (∆ = − 3.4, % change 
= − 68%) in our PMS sample (Fig. 1). The other subscales 
scores were also lower in PMS, but not to the same extent 
in stereotyped behavior (∆ = − 3.1, % change = −36%), 
self-injurious behavior (∆ = − 1.5, % change = − 42%), 
and restricted interests (∆ = − 1.6, % change = − 37%).

Studies of other genetic disorders with a high preva-
lence of ASD and ID, such as fragile X syndrome (FXS), 
have shown elevated RBS-R total scores relative to the 
Lam and Aman (2007) ASD group (though it is impor-
tant to note that these studies used the original, non-
refactored RBS-R). These studies show higher total scores 
on the RBS-R compared to our PMS cohort (FXS alone = 
20.5 ± 14.5, FXS + ASD = 27.1 ± 17.0 [35]; FXS adoles-
cents = 27.7 ± 20.35, FXS adults = 25.2 ± 19.10 [36]). 
Questions remain as to why the scores in the present 

Fig. 1 Mean RBS‑R subscales scores in this cohort compared to data from prior published cohorts. ASD = autism spectrum disorder; DD = 
developmental delay; TD = typically developing
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PMS cohort appear much lower than another genetic dis-
order characterized by ID and ASD.

One possibility is that PMS simply has a different RRB 
profile than ASD and other genetic conditions character-
ized by ID; however, it is difficult to draw this conclusion 
using the presented data without RBS-R profiles from 
other conditions to compare to our PMS group. Prior 
data may provide some insight. For example, a study 
comparing the phenotype of PMS to FXS, Down syn-
drome, and idiopathic ASD showed lower overall rates 
of repetitive behavior in PMS compared to FXS and idi-
opathic ASD on the Repetitive Behavior Questionnaire 
(RBQ) [27]. Item-level data were not examined, but RBQ 
subscales indicated that individuals with PMS had lower 
insistence on sameness and compulsive behavior subscale 
scores than idiopathic ASD and, in the case of insist-
ence on sameness, FXS. Another study examined seven 
different genetic conditions (Angelman, Cornelia de 
Lange, Cri-du-Chat, Fragile X, Prader-Willi, Lowe, and 
Smith-Magenis syndromes), three of which (Cri-du-chat, 
Smith-Magenis, and Prader-Willi syndromes) were noted 
to display a relatively specific RRB profile at the item-
level using the RBQ [22]. Those findings are not directly 
comparable to the data in the present paper because a 
different RRB measure was used, and PMS was not part 
of this analysis. However, it is notable that the Angelman 
syndrome profile was described as having “a lower level 
of specificity on most forms of repetitive behavior” across 
all domains, with a lower total score on the RBQ than 
the other genetic conditions. Angelman syndrome was 
the only syndrome in the study that was characterized 
by severe-profound ID, as is PMS (the other syndromes 
included wider IQ ranges encompassing mild and mod-
erate ID). When item-level data within our PMS sample 
were examined for rates of endorsement, only 4 of the 
items were endorsed at a rate >= 50%, perhaps indicating 
that a “lower level of specificity” is also being displayed in 
PMS.

Though these neurogenetic developmental disorders 
are often characterized by ID, the present PMS sample is 
characterized by severe to profound ID evidenced by an 
average IQ of 26.08, whereas the FXS groups in the afore-
mentioned studies had average IQs of 41 and 47, respec-
tively. The differences in RBS-R score could be due to this 
difference in cognitive ability. Indeed, the relative absence 
of ritualistic/sameness behaviors noted in the PMS sam-
ple would be consistent with this theory, as “higher-
order” behaviors are shown to be more prevalent in those 
with higher IQ [13] and are endorsed in populations 
with less severe ID, such as FXS [14]. In severe to pro-
found ID, certain RBS-R items may have little variabil-
ity or poor validity, as the scale has not been thoroughly 
validated in this population. Indeed, a recent FXS study 

indicated that specific items on the RBS-R produced the 
differences in subscale scores between diagnostic groups 
(i.e., FXS-alone versus FXS + ASD), indicating that 
these items may not maintain measurement invariance 
between diagnostic groups (e.g., ID-alone and ID+ASD 
groups) [14]. This area warrants further investigation. 
Another possible explanation for this discrepancy is that 
families/caretakers completing the RBS-R instrument 
may be answering with respect to what they believe are 
the norms for other children/adults with PMS, while in 
at least the aforementioned studies in FXS, families were 
instructed to rate relative to a typical child/adult.

Among repetitive behaviors, however, stereotypies are 
relatively more severe compared to other types of repeti-
tive behaviors in PMS. Specifically, on the RBS-R, the 
prevalence of hand/finger stereotypies (item 3) was the 
highest. The severity of stereotyped behaviors, repre-
sented by the RBS-R stereotyped behavior, correlated sig-
nificantly with IQ, but not ASD diagnosis. In support of 
this notion, prior studies have established a relationship 
between lower-order repetitive behaviors, such as stere-
otypic behavior, and lower IQ [10–13]. With respect to 
the refactored RBS-R used for this analysis, lower-order 
repetitive behaviors comprise the self-injurious behavior, 
stereotypic behavior, and restricted behavior subscales, 
while higher-order repetitive behaviors apply to the 
compulsive behavior and ritualistic/sameness behavior 
subscales. These groupings align with the marked dif-
ference in change scores noted above, because although 
PMS showed lower scores across all RBS-R subscales, a 
greater difference is apparent between the PMS cohort 
and Lam and Aman’s (2007) ASD sample [28] in higher-
order RRB subscales than in the lower-order RRB. How-
ever, only the RBS-R stereotypic behavior subscale score 
correlated with IQ in PMS. Again, this discrepancy may 
be due in part to the fact our cohort was heavily imbal-
anced toward severe to profound ID with a significantly 
reduced range of IQ scores overall, potentially limit-
ing the types of behaviors reflected in the other RRB 
subscales, even those that are considered lower-order 
behaviors. For example, on the Lam and Aman (2007) 
[28] restricted behavior subscale, item 40 reads: “fasci-
nation, preoccupation with one subject or activity (e.g., 
trains, computers, weather, dinosaurs)”, with the defini-
tion further specifying a “limited range of focus, interest 
or activity.” This item may require a certain level of cogni-
tive ability (e.g., attention) for a parent to endorse a score 
above 0 and could account for the lower scores on this 
subscale in a population with severe to profound ID, such 
as PMS. It is possible that the relative decrease in RRB 
severity in the present study is attributable to the level of 
severe to profound ID seen in PMS; however, a sample 
of individuals with a wider range of ID would be better 
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suited to answer this question and should be considered 
in future research.

One other way to investigate the discrepancy of RBS-R 
scores in PMS versus other neurodevelopmental dis-
orders is through the investigation of neurobiological 
pathways underlying types of repetitive behavior using 
neuroimaging. Most of this neuroimaging work has only 
been conducted at the level of RRB total severity, but 
there is evidence that the same systems may be involved 
across these disorders. In young children with ASD, neu-
roanatomical changes in the basal ganglia and thalamus 
may play a role in the underlying pathophysiology of 
repetitive behaviors [37]. Additionally, a review of imag-
ing studies in neurodevelopmental disorders indicates 
that RRBs relate not only to basal ganglia alterations, 
but also frontotemporal areas and the cerebellum [38]. 
The basal ganglia (caudate, putamen, and pallidum) and 
cerebellum have been explored in a small cohort of indi-
viduals with PMS, with the basal ganglia regions shown 
to be smaller in patients relative to controls [39]. Fur-
thermore, a negative relationship between cerebellar vol-
ume and RBS-R total score was found in the PMS group, 
extending the relationship between the cerebellum and 
RRBs from the ASD and ID literature to PMS. While 
the frontotemporal areas found in previous ASD studies 
were not implicated in the PMS group [39], this may be 
a result of the differences in the types of RRBs displayed 
in each group as described in the present study. If PMS 
shows relatively less severe higher-order RRB than ASD 
as evidenced in our study, then brain regions involved in 
the etiology of higher-order RRB may be implicated in 
an ASD cohort but not a PMS cohort. This may account 
for the relation between RRB and frontotemporal areas 
in ASD [38] which was not reported in PMS. However, 
brain regions related to RRB scores in both the PMS and 
ASD samples, namely the cerebellum and basal ganglia, 
may be associated with the presence of the behaviors 
that are seen across both disorders, such as stereotypic 
behaviors. Not only is this consistent with the findings 
presented in our study, but also maintains face validity 
because of the cerebellum’s role in sensorimotor pro-
cesses and established relationship with the basal ganglia 
[40]. Additionally, Shank3 deficient mice exhibit repeti-
tive grooming (considered a behavioral assay of RRB), 
deficits in striatal and cortico-striatal synapses [41–44], 
and altered excitatory/inhibitory signaling [42–47]. The 
precise role of these neural factors in the formation of 
repetitive behaviors in humans with PMS remains largely 
untested and an important area for future research.

The results of this study provide a comprehensive 
assessment of the repetitive behavior profile in PMS; 
however, there are a number of limitations to con-
sider. While this study follows participants for biannual 

assessments over three years, the present study focuses 
on a cross sectional analysis of baseline data only. To 
maximize the potential understanding of the repeti-
tive behavior profile in PMS, future analyses will exam-
ine longitudinal data not presented herein. Additionally, 
the PMS sample in the present study is notably different 
not only in the level of ID, but also in its sex composi-
tion compared to ASD samples from previous studies. 
Recent studies have shown that there may be differences 
in endorsement of RRB items related to sex in ASD 
populations [48], and presumably this may carry over 
to other conditions. With this in mind, future studies of 
RRB should potentially control for sex differences when 
comparing genetic conditions to idiopathic ASD sam-
ples. In addition, the repetitive behavior assessment was 
limited to the RBS-R. Caregiver-report instruments in 
particular may not be ideal as parents may under-report 
symptoms by comparing their child to what is expected 
in PMS rather than to the normative population. In the 
future, standardized training for families on completing 
rating forms and the use of objective measurements of 
repetitive behaviors may be helpful to improve the valid-
ity of results. For example, recent advances in wearable 
biosensors and machine learning have allowed for auto-
matic detection of RRB occurrences [49] so that objective 
measurement of stereotypic behaviors might be feasible 
in future studies. Finally, in our neurodevelopmental 
phenotyping, we did not analyze data from ADOS-2 or 
ADI-R, given that a majority of our cohort had severe-
profound ID and a mental age < 18 months, below the 
threshold for which these measures are valid. In fact, a 
recent analysis of data collected from this cohort on the 
Social Responsiveness Scale confirmed the lack of valid-
ity for at least this measure of ASD in this population 
[50].

Conclusions
In sum, the RRB profile seen in PMS, a condition charac-
terized by severe to profound ID and co-occurring ASD, 
appears milder than RRB severity as previously reported 
in ASD samples. As was hypothesized, the most severe 
RRB subtype in this sample appears to be stereotypic 
movements, which was related to level of cognitive func-
tioning. In addition to providing insight about the behav-
ioral profile of PMS, these findings indicate that perhaps 
certain types of RRB should be preferentially targeted 
when investigating future etiologies and therapeutics for 
behaviors associated with PMS.
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