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Abstract 

Background:  Autism spectrum disorder is a neurodevelopmental disorder, affecting 1–2% of children. Studies have 
revealed genetic and cellular abnormalities in the brains of affected individuals, leading to both regional and distal 
cell communication deficits.

Methods:  Recent application of single-cell technologies, especially single-cell transcriptomics, has significantly 
expanded our understanding of brain cell heterogeneity and further demonstrated that multiple cell types and brain 
layers or regions are perturbed in autism. The underlying high-dimensional single-cell data provides opportunities for 
multilevel computational analysis that collectively can better deconvolute the molecular and cellular events altered 
in autism. Here, we apply advanced computation and pattern recognition approaches on single-cell RNA-seq data to 
infer and compare inter-cell-type signaling communications in autism brains and controls.

Results:  Our results indicate that at a global level, there are cell-cell communication differences in autism in compari-
son with controls, largely involving neurons as both signaling senders and receivers, but glia also contribute to the 
communication disruption. Although the magnitude of changes is moderate, we find that excitatory and inhibitor 
neurons are involved in multiple intercellular signaling that exhibits increased strengths in autism, such as NRXN and 
CNTN signaling. Not all genes in the intercellular signaling pathways show differential expression, but genes in the 
affected pathways are enriched for axon guidance, synapse organization, neuron migration, and other critical cel-
lular functions. Furthermore, those genes are highly connected to and enriched for genes previously associated with 
autism risks.

Conclusions:  Overall, our proof-of-principle computational study using single-cell data uncovers key intercellular 
signaling pathways that are potentially disrupted in the autism brains, suggesting that more studies examining cross-
cell type effects can be valuable for understanding autism pathogenesis.
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Introduction
Autism spectrum disorder (ASD) is a class of neurode-
velopmental disorders characterized by two main clinical 
and behavior manifestations: (i) social communication 
and interaction deficits and (ii) restricted interests and 
repetitive behaviors, according to DSM-5 classification 

[1]. The Centers for Disease Control and Prevention 
(CDC) estimates that ASD prevalence is 1 in 54 in chil-
dren aged 8 years old and ~4 times more in boys than in 
girls, based on data from a 2016 report [2]. Genetics is 
the major risk factor with contributions from both rare 
and common, inherited, and de novo variants, but envi-
ronment also plays significant roles. To date, the Simons 
Foundation Autism Research Initiative (SFARI) [3] has 
collected 1003 genes related to ASD risk supported by 
various levels of evidence, but individually, each of the 
genes accounts for less than 1% of the cases. These genes 
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have a diverse array of functions but can be categorized 
into several broad molecular and cellular pathways, 
including chromatin remodeling, synaptic function, and 
signaling pathways, such as WNT, bone morphogenetic 
protein (BMP), Sonic hedgehog (SHH), and retinoic acid 
(RA) [4–7]. Overall genetic studies suggest that the neu-
ropathological mechanisms behind ASD are complex and 
multifaceted, and the risk genes have roles in multiple 
molecular and cellular networks.

Mutations in ASD risk genes can lead to structural and 
functional disruptions in neural circuits. At the genetic 
and cellular levels, synaptogenesis, and synapse function 
have been a long and major focus. Cell-cell signaling reg-
ulates synapse formation and plasticity, but they are also 
key for other cellular processes such as immune response, 
cell differentiation and maturation, and cell homeostasis 
[8, 9]. Many studies have pointed to mutations in ASD 
risk genes related to such intercellular communications. 
Carias and Wevrick [10] studied 94 genes with de novo 
missense (DNMs) variants in Tourette syndrome and 
ASD and found that many of them are membrane-asso-
ciated proteins, including cell-cell adhesion or commu-
nication proteins, G-protein signaling, and centrioles or 
cilia regulators or components. Similarly, analyzing data 
from whole exome sequencing (WES) and whole genome 
sequencing (WGS), Zhang et  al. found that many DNM 
ASD candidate genes are involved in cell-cell communi-
cations [11]. Furthermore, in a genome-wide association 
study (GWAS) of 18,381 ASD and 27,969 control indi-
viduals, Grove et al. [12] identified five genome-wide sig-
nificant loci and additional strong candidates, including 
genes involved in cell interaction and signaling (NEGR1, 
GADPS, and KCNN2). A subsequent WES study report-
ing 102 risk genes also supported the roles of ASD genes 
in gene regulation and neuronal communication and 
further linked some genes to delayed age of walking and 
reduced IQ [13]. In a separated study focused on ultra-
rare variants, Wilfert et al. [14] also uncovered risk genes 
implicated in intercellular signaling (e.g., Erb signal-
ing). Nongenetic studies have also pointed to structural 
changes in ASD brain that can lead to disrupted circuits 
and connections. For example, in 2009 Keary et  al. [15] 
and Casanova et al. [16] showed that corpus callosum vol-
ume in ASD brains was reduced, and gyral window was 
abnormally narrow. A recent neuroimaging and computa-
tional study from the autism brain imaging data exchange 
initiative further revealed both microcircuit and mac-
roscale connectome abnormality in autism brains [17]. 
Chien et  al. also observed thinner cortical thickness in 
bilateral cingulate subregions in ASD individuals [18].

To investigate cell communication appropriately, stud-
ies need to be performed at individual cell or cell type 
level. This is particularly important for brain disorders 

because a human brain is composed of many types and 
subtypes of neurons and glia that are located in multi-
ple brain layers and regions, with some exhibiting layer 
and regional specificity. Several studies have investi-
gated cell-type and brain-layer expression patterns of 
risk genes for ASD and other psychiatric disorders. For 
example, we previously analyzed multiple in  vitro and 
in vivo human neural and brain expression datasets from 
both control and ASD studies and demonstrated that 
inhibitory neurons could be the major cells affected in 
ASD, supporting an imbalance between inhibitory and 
excitatory signaling as important for ASD pathogenesis 
[19]. DNM variants disrupting protein-protein interac-
tions were identified in excitatory and inhibitory neu-
ronal lineages by Chen et  al. [20]. Likewise, in a WES 
study, Satterstrom et  al. [13] reported enriched expres-
sion of the 106 ASD risk genes in maturing and mature 
excitatory and inhibitory neurons, as well in oligoden-
drocyte progenitor cells and astrocytes. In addition, 
studies from the PsychENCODE Consortium further 
underscored cell specific roles [21, 22]. Most recently, 
Velmeshev et al. [23] applied single-cell transcriptomics 
to compare ASD brains to controls and showed that gene 
expression changes occurred predominantly in microglia 
and upper layer excitatory neurons, while affected genes 
were enriched for synaptic function. Furthermore, they 
suggested that ASD severity was significantly linked to 
groups of genes expressed in specific neurons. Reana-
lyzing the same data, Ji et al. identified cell-type-specific 
ASD-associated gene modules and showed that excita-
tory neurons, such as those of layer 2/3 (L2/3), L4, and 
L5/6-CC (cortico-cortical projection neurons), could 
play essential roles in ASD [24].

While these studies have underscored the roles of 
specific cell types, a direct and detailed examination of 
cell-cell communications in ASD brains has not been 
reported. On the other hand, cell-cell communication 
(CCC) has become a new computational frontier in sin-
gle-cell transcriptomic (scRNA-seq) studies, with the 
goal to systematically characterize intercellular com-
munications between cell types [25–27]. These kinds of 
studies are typically focused on molecular interactions 
involved in ligand-receptor, receptor-receptor, and extra-
cellular matrix-receptor proteins. The interactions can 
be categorized into four main types: (1) autocrine signal-
ing for intracellular communication, (2) paracrine com-
munication in which molecules are secreted by diffusion, 
(3) juxtracrine communication based on direct contact 
established by gap junctions, and (4) endocrine where 
molecules are secreted and signaling is achieved through 
extracellular fluids [9, 28]. Since these communications 
rely on the organization of cellular activities, it is impor-
tant to consider the expressed molecules, associated 
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pathways, the directionality, the magnitude, and the bio-
logical relevance [9]. Many software have been devel-
oped to use single-cell transcriptomic data for predicting 
cell-cell communications, mostly based on cell-type (or 
subtype or cluster) annotation and a curated database 
of ligand-receptor and other interacting surface proteins 
[29–32]. The databases and the computational methods 
for inferring CCC, however, are quite diverse.

After evaluating a few software packages and consid-
ering their benchmark performances [26, 33], we chose 
CellChat [32] for inferring, visualizing, and comparing 
CCC in this study. Its database consists of 2021 validated 
and curated protein interactions, including paracrine/
autocrine ligands/receptors, extracellular matrix recep-
tor interactions, and cell-cell contact interactions. In con-
trast to other software, CellChat has multiple advantages, 
for example, by taking into account the heterodimeric 
complexes involved in cell-cell interactions, as well as sol-
uble agonists, antagonists, and stimulatory and inhibitory 
membrane-bound co-receptors [32]. Additionally, CCC 
is calculated using mass action model, and its prediction 
can be used for network analysis, patter recognition, and 
manifold learning, thus providing a way for analyzing 
CCC at multiple scales. Moreover, it showed improved 
performances over other software, for example, finding 
stronger interactions [32]. Here, we applied CellChat to 
previously published single-cell nuclei RNA-seq (snRNA-
seq) data from 15 autistic and 16 control brains. In the 
original study, Velmeshev et  al. have analyzed differen-
tially expressed genes (DEGs) in 17 cell types and their 
enriched functions and showed that upper-layer excita-
tory neurons and microglia are preferentially affected in 
autism [23]. While the authors identified dysregulated 
genes involved in synaptic function, such as SYN1 and 
NRXN1, a systematic analysis of cell-cell interactions was 
not explored. Here, we conducted a comparison of the 
cell-cell communication networks in the two groups of 
brains and then identified critical intercellular signaling 
that was altered in the ASD brains. In addition, we ana-
lyzed function enrichment of the genes within the altered 
signaling pathways, their relationship to known ASD risk 
genes, and their connection to differential intracellular 
pathways in ASD brains compared with controls.

Materials and methods
Human brain single‑nucleus RNA‑seq data
The human snRNA-seq data, consisting of 104,559 nuclei 
from prefrontal (PFC) and anterior cingulate cortex (ACC) 
postmortem tissues [23], were downloaded from the UCSC 
cell browser (https://​cells.​ucsc.​edu/?​ds=​autism). Metadata 
about samples are available at the same website, and the 
snRNA-seq data processing and clustered were described 
previously [23]. The gene expression matrix was already 

normalized by total unique molecular identifiers (UMIs) 
per nucleus and log2-transformed. PFC data consisted 
of 62,166 cells from 13 ASD (32,019 cells) and 10 control 
samples (30,147 cells), while 9 ASD (19,984 cells) and 3 
control (22,409 cells) ACC samples made up 42,393 nuclei. 
We directly used the authors’ original nuclei classification 
of 11 neuronal types: parvalbumin interneurons (IN-PV), 
somatostatin interneurons (IN-SST), SV2C interneurons 
(IN-SV2C), VIP interneurons (IN-VIP), layer 2/3 excitatory 
neurons (L2/3), layer 4 excitatory neurons (L4), layer 5/6 
corticofugal projection neurons (L5/6), layer 5/6 cortico-
cortical projection neurons (L5/6-CC), maturing neurons 
(Neu-mat), NRGN-expressing neurons (Neu-NRGN-I), 
NRGN-expressing neurons (Neu-NRGN-II), and 6 non-
neuronal cell types: fibrous astrocytes (AST-FB), protoplas-
mic astrocytes (AST-PP), oligodendrocyte precursor cells 
(OPC), oligodendrocytes, microglia cells, and endothelial 
cells. Uniformity of cell numbers between the two condi-
tions across brain regions was confirmed by applying Wil-
coxon rank-sum test (p > 0.05).

Cell‑cell communication analysis in PFC data
We performed cell-cell communication analysis using the 
CellChat [32] software, on PFC and ACC samples sepa-
rately. For every pair of cell types, ligand-receptor (L-R 
and other) interactions were identified and measured. 
Intercellular communication is based on the projected 
ligand and receptor profiles where the expression level 
of L and R is approximated by their geometrical mean 
across individual cells of a type. These interactions repre-
sent the interaction strengths (also referred as “probabil-
ity” in CellChat) between all ligands and their receptors 
expressed in two given cell types. Note that CellChat 
considers important signaling factors such as hetero-
meric complexes involved in each interaction in addition 
to a L-R pair, therefore, the absence of any of those com-
ponents leads to a null interaction. Genes expressed in 
less than 20% of cells in one cell type were excluded, and 
only statistically significant (p < 0.05, permutation test) 
communications were considered in our analysis.

We took two complementary approaches to define 
cell-cell interactions in ASD and controls and differ-
ences between them (Fig.  1a). In the “global approach,” 
cells from all ASD samples were merged into one group 
and the control cells into another; ligand-receptor inter-
actions were calculated and compared between the two 
groups. From individual L-R interactions to signaling, 
interaction score of a signaling pathway was calculated 
by summing up the interaction strengths for all the L-R 
in the pathway. Dysregulated signaling pathways between 
ASD and controls were then identified by CellChat (Wil-
coxon test, p < 0.05). CellChat also allows the identifica-
tion of key signaling and latent communication patterns 

https://cells.ucsc.edu/?ds=autism


Page 4 of 20Astorkia et al. Journal of Neurodevelopmental Disorders           (2022) 14:29 

across all signaling pathways. It applies cophenetic and 
silhouette metrics, both based on hierarchical clustering, 
to identify the numbers of patterns as well as major send-
ing/outgoing and receiving/incoming signaling pathways 
for both conditions. In the second sample-by-sample 
approach, we treated each sample independently, i.e., 
the strengths of L-R interactions and signaling pathway 
scores were calculated within each sample. After path-
ways identified in less than 5 samples were removed, 
significantly dysregulated L-R interactions in the remain-
ing pathways for each pair of cell types were identified 
by applying Wilcoxon test (p < 0.05) to the sample level 
data (i.e., “pseudo-bulk values”), comparing ASD to con-
trols. Among the significantly differential pathways, we 
picked 6 with literature support for their involvement in 
ASD and then used chord diagrams to illustrate the cell-
cell communications and differences between ASD and 
controls. Chord diagrams were based on the differences 
in ASD vs control pathway strengths between individual 
pairs of cell types.

Overrepresentation analysis based on curated gene sets 
and gene ontology
Two overrepresentation tests were performed to test 
statistical enrichment for genes either in selected gene 
ontology (GO) terms or in previously curated gene sets 

related to brain disorders, using all genes involved in the 
disrupted pathways as the test set. In the former, cell-cell 
interacting genes in dysregulated pathways were used 
for enrichment of GO “biological processes” terms (false 
discovery rate (FDR) < 0.05). EnrichGO function from 
clusterProfiler [34] was used to run this, and “simplify 
function” was used to reduce redundancy in enriched GO 
terms. We also applied ClueGO (v2.5.8) [35] to the most 
significantly enriched GO terms (FDR < 0.0005) to better 
define function enrichment and to reduce redundancy. In 
the latter, we first obtained various gene sets. ASD candi-
date genes were downloaded from two sources: (1) SFARI 
database (https://​www.​sfari.​org) (ASD_SFARI) compris-
ing 1003 genes scored as syndromic, high confidence, 
strong candidate, and suggestive evidence levels and (2) 
AutismKB [36] (ASD_AutismKB) with 228 genes. Two 
schizophrenia (SCZ) risk gene sets were obtained from 
SZDB2.0 (http://​www.​szdb.​org/​index.​html) database; 
SCZ_GWAS gene set was built with 571 genes identified 
in GWAS studies and SCZ_CNV gene set with 408 genes 
affected by copy number variation (CNV). The 1190 
genes related to bipolar disorder were obtained from a 
previous study [19], while gene sets for intellectual dis-
ability (ID_CNV; n = 908) and attention-deficit hyper-
activity disorder (ADHD; n = 359) were obtained from 
(http://​www.​ccgen​omics.​cn/​IDGen​etics/​index.​php) and 

Fig. 1  Change in communication between individual pairs of cell types in ASD. a Computational workflow of key analytic steps. b Difference in the 
total numbers of L-R interactions in ASD vs control PFC. c Difference in the total strengths of L-R interactions in ASD vs control PFC. d Difference in 
the total numbers of L-R interactions in ASD vs control ACC. e Difference in the total strengths of L-R interactions in ASD vs control PFC. In b–e, lines 
indicate the changes in individual pairs of cell types, with red for increase and blue for decrease in ASD. The thickness of the lines represents the 
extent of changes, with the maximal corresponding to 28 in b/d and 0.36 in c/e

https://www.sfari.org
http://www.szdb.org/index.html
http://www.ccgenomics.cn/IDGenetics/index.php
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(http://​adhd.​psych.​ac.​cn/​index.​do) databases, respec-
tively. These 7 gene lists were then used for overrepresen-
tation analysis of genes in dysregulated pathways using 
the Fisher’s test in the GeneOverlap package [37] in R.

Protein‑protein interaction network
The STRING database [38] was used to identify the pro-
tein-protein interaction (PPI) networks connecting the 
SFARI ASD genes to the genes in the dysregulated CCC 
signaling pathways. The interactions include both physi-
cal and functional associations, and the sources used 
here for PPI were experiments, databases, co-expression, 
gene fusion, and co-occurrence databases. A highest con-
fidence of 0.9 was applied, and disconnected nodes were 
removed.

Gene enrichment analysis based on cell types
To define pathways significantly affected by expression 
changes between ASD and controls, for each cell type, 
we applied gene set enrichment analysis (GSEA, v4.1.0) 
[39, 40] to all genes expressed in that cell type, ranked by 
their expression fold changes between ASD and control 
samples. The enriched GSEA sets (FDR < 25%) in the GO 
“Biological Processes” were retrieved to determine the 
significant GO terms containing genes encoding ligands 
or receptors.

Spatial co‑expression of ligands and receptors
Maynard et  al. [41] generated spatial gene expression 
profiles for six layers and white matter of two pairs of 
“spatial replicates” from three dorsolateral prefrontal cor-
tex samples [41]. We used these data to compute Pear-
son’s correlation coefficient between a pair of L-R across 
cells in all layers or within specific layers, with the results 
compared to those from randomly created L-R pairs.

Cell‑cell communication analysis in anterior cingulate 
cortex data
We applied the above analysis for the PFC samples to the 
ACC data, with the same designs and parameters.

Using L‑R interactions from the CellPhoneDBv2.0 database 
to run CellChat in PFC data
We obtained the ligand-receptor interactions (n = 1,396) 
from the CellPhoneDBv2.0 [31] and applied CellChat on 
them in our sample-by-sample approach to determine 
and compare signaling pathways present in control and 
ASD datasets.

Results
Numbers and strengths of L‑R interactions in autistic PFC 
and controls
Most current computational studies of cell-cell com-
munications (or interactions) from single-cell tran-
scriptomics data analyze ligand-receptor interactions 
among all cell types within one sample, but some soft-
ware also provides methods for comparing interac-
tions between two samples. We thus started with this 
common practice by comparing cell-cell interactions 
between ASD and control brains using a previously 
published snRNA-seq data [23] (Fig.  1a). The data 
contained samples from prefrontal (PFC) and anterior 
cingulate cortex (ACC), while cells/nuclei were classi-
fied into 17 types (see “Materials and Methods”). We  
focus our description on PFC below as its relation to 
social and cognition function and ASD is relatively bet-
ter studied, but the same bioinformatics methods were 
applied to ACC data. We merged cells from all 13 ASD 
PFC samples into one group and cells from 10 control 
PFCs into the other and then studied the between-
group difference (referred as “global approach”; Fig. 1a). 
We used the software CellChat, which analyzes the 
expression of ligands, receptors, and other proteins 
involved in cell-cell interactions to determine the inter-
action strength in an interacting protein complex for a 
pair of cell types [32]. For simplicity, we hereafter refer 
all pairwise interactions as ligand-receptor (L-R) inter-
actions even though noncanonical ligands or receptors 
are also considered. In Additional file 1: Table S1a, we 
show the cell numbers in each of the 17 cell types and 
the numbers of L-R interactions in which a cell type 
acts as sender or receiver for both PFC and ACC. In 
total, CellChat identified 6433 and 5049 interactions in 
control and ASD PFC, respectively (Additional file  2: 
Table  S2 a–b). The highest number of interactions in 
controls was 103, found in the L5/6-CC to L5/6-CC 
(cortico-cortical projection neurons) autocrine interac-
tions, while the highest in ASD sample was 79, between 
L5/6-CC and L2/3 cell types. The total interactions in 
ACC are similar to those in PFC, with 5940 in control 
and 5843 in ASD (Additional file  2: Table  S2 c–d). In 
both control and ASD ACC, L5/6-CC autocrine signal-
ing had the most interactions, 126 in control and 109 
in ASD. In both brain regions, L5/6-CC and L5/6 (layer 
5/6 corticofugal projection neurons) are the cell types 
with the most interactions as either sender or receiver 
cells (maximal of 904 and 771 in L5/6-CC and L5/6, 
respectively), while microglia and Neu-NRGN-II have 
the least (maximal of 37 and 96 in microglia and Neu-
NRGN-II, respectively). This difference is not directly 
related to cell numbers, because there is no significant 
correlation between cell numbers and L-R interaction 

http://adhd.psych.ac.cn/index.do
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numbers (Pearson’s correlation coefficient = 0.07) 
(Additional file 3: Fig. S1).

Although moderate (largest reduction is only 28, 
seen between L4 and L5/6 CC), we found a decreased 
trend (200 decreased vs 20 increased) in the numbers of 
cell-cell interactions in ASD vs controls for the 17 cell 
types in PFC (Fig. 1b; Additional file 3: Fig. S2a), involv-
ing both autocrine and paracrine signaling. This com-
parison of interaction numbers, however, has a caveat, 
because it could underestimate the contribution of 
strongly expressed ligands or receptors while amplify 
the small changes in lowly expressed genes; an interac-
tion could be counted in one group but not in the other 
if its ligand or receptor is expressed in > 20% of cells (a 
threshold applied in CellChat to each cell type) in one 
group but < 20% in the other. The interaction strength, 
which captures the actual expression levels of all the 
genes encoding proteins in an interaction, is a better 
metric. With strengths of all L-R interactions consid-
ered (the maximal values are 0.37 in control and 0.4 in 
ASD), we found that cell-cell communications between 
many pairs of cell types became overall stronger in ASD 
(156 increased vs 133 decreased), with the increases 
most apparent for interactions involving excitatory and 
inhibitory neurons (Fig. 1c; Additional file 3: Fig. S2b). 
At the level of individual L-Rs, the interaction strengths 
also exhibited a trend of moderately increased in ASD 
(data not shown). The largest increase was found in an 
autocrine signaling for IN-SV2C interneurons, followed 
by signaling between IN-SV2C inhibitory neurons and 
L2/3 and L4 excitatory neurons, suggesting potential 
abnormal excitatory-inhibitory neuronal communica-
tions in ASD brains. Among the decreased interactions 
in ASD, paracrine signaling between oligodendrocyte 
and two inhibitory neurons (IN-SV2C and IN-PV) 
showed the most reduction, followed by OPC autocrine 
signaling. These findings are very interesting, not only 
in terms of major implications of inhibitory neurons but 
also with respect to the increasing appreciation of the 
role of glia in neuron development and functions, such 
as synapse modification [42, 43]. In addition, reduction 
of oligodendrocyte cells was previously reported and 
linked to neurodevelopmental disorders [44, 45].

The ACC shows a different pattern of alterations in 
cell-cell interactions, with similar numbers of cell-type 
pairs exhibiting increased or decreased interactions in 
ASD brains (Fig. 1d–e; also see below).

Major intercellular signaling patterns in PFC
Next, we grouped L-R interactions into signaling pathways 
using CellChat and compared them between ASD and 
controls. This is a key advantage of CellChat over other 
software, and it is important because many L-R interac-
tions would invoke the same downstream signaling, such 
as FGF1/2/3-FGFR1/2/3 or NRNX1/2/3-NLGN signal-
ing. Afterwards, we used CellChat to identify the major 
latent patterns in outgoing and incoming signaling in the 
control and ASD PFC, by clustering cell types sending or 
receiving similar signaling. For outgoing signaling (Fig. 2a 
and b), CellChat uncovered 5 and 4 patterns for control 
and ASD samples, respectively. In control (Fig. 2a), pattern 
1 involved interneurons and Neu-mat cells, in which the 
main pathways were IGF, TAC, HGF, and OSTN. Pattern 
2 involved solely excitatory layer neurons with NOTCH, 
WNT, EPHB, and NT as main contributors. Oligoden-
drocytes clustered by themselves in pattern 3, expressing 
SPP1, CD22, and MAG. Pattern 4 involved endothelia and 
microglia, with FN1, ESAM, OCLN, and PECAM1 as the 
coordinators. Finally, pattern 5 was comprised of only non-
neuronal astrocytes and OPC cells, in which the expres-
sion of genes related to VEGF and ANGPTL was the most 
abundant. On the other hand, pattern 1 from ASD PFC was 
a mixture of nonneuronal and neuronal cells with astro-
cytes, interneurons, and Neu-mat (Fig. 2b). In this pattern, 
genes encoding IGF, CRH, BMP, and TAC signaling were 
the dominant ligands. In pattern 4, similarly, both non-
neuronal and neuronal cells were involved, with a mixture 
of microglia and NRGN-expressing neurons. Here, CD39, 
CD45, and VISTA were the main senders. Like controls, 
excitatory neurons grouped together in pattern 2 with out-
going signals from NT, ANGPT, and CSF pathways. Pat-
tern 3 clustered only nonneuronal cell types, endothelial 
and oligodendrocytes cells, with CD22, MAG, CLDN, and 
ESAM as the main signaling contributors.

From the receiving end, 7 patterns were found in con-
trol PFC while 6 in ASD (Fig. 2c and d). In control (Fig. 2c), 
pattern 1 involved excitatory layer neurons, while SEMA5, 
VIP, and WNT were the main signaling receivers. Pat-
tern 2 grouped interneurons and Neu-mat cells with genes 
related to OSTN and PACAP pathways. FN1 and TENAS-
CIN pathways were the main signal receivers in pattern 3, 
in which astrocytes participated. Endothelia, oligodendro-
cytes, and microglia clustered by themselves in patterns 4, 
5, and 7. Finally, IN-SV2C were in pattern 6 with TAC, KIT, 
and CD226 as main receptors for incoming signals. For ASD 
(Fig. 2d), pattern 1 was formed by excitatory layer neurons 

Fig. 2  Cell-cell communication patterns in PFC. The networks show the CellChat inferred latent patterns connecting cell groups sharing similar 
signaling pathways. The thickness of the water flow represents the relative contribution of the cell group or signaling pathway to a latent pattern; 
outgoing patterns for secreting cells in control (a) and ASD (b); incoming patterns of receiving cells in control (c) and ASD (d). Note that CellChat 
only includes main contributors in these plots, and cell types (e.g., Neu-NRGN-I) making small contributions are thus omitted

(See figure on next page.)
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Fig. 2  (See legend on previous page.)
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with SEMA5, CCK, and SEMATOSTIN pathways as the 
main receptors. Interneurons and Neu-mat cells clustered 
again together in pattern 2, with TAC, KIT, and PACAP 
pathways. Genes involved in FN1 and TENASCIN path-
ways were the predominant receptors in pattern 3, enclos-
ing astrocytes. Endothelial, both oligodendrocyte cell types 
and microglia were enclosed in patterns 4, 5, and 6, respec-
tively, and showed same patterns as in control dataset.

Taken together, analysis of the intercellular CCC pat-
terns indicates that all cell types contribute, although 
at various extents, in both control and ASD PFCs, and 
no cell type appears to serve as major signaling hubs in 
either condition. The CCC patterns seem similar in ASD 
and controls, but it appears a little less diverse (one fewer 
pattern) in ASD.

Pan‑cell type signaling difference between ASD 
and control PFCs
Considering that one ligand may interact with receptors 
on multiple cell types, and vice versa, we next exam-
ined intercellular signaling for which multiple or all 17 
cell types participated, in contrast to looking at cell-cell 
communications between any two cell types as described 
above. For this, we used CellChat to sum up all the L-R 
interaction strengths in the same signaling pathway 
across all cell types in which the L-R encoding genes were 
expressed. In total, CellChat has a collection of 229 fami-
lies of signaling pathways. Among them, 68 unique ones 
were identified in our global approach. CellChat con-
siders this pan-cell CCC network as “information flow.” 
Applying it to our data, we obtained “relative information 
flow” change between ASD and controls (Fig.  3a; Addi-
tional file 4: Table S3). The result indicates that 8 signal-
ing pathways, noncanonical WNT (ncWNT), GRN, EGF, 
THBS, PTH, OCLN, SPP1, and CD226, were specifically 
identified in the control dataset, but no pathways unique 
to ASD were found. Additionally, 48 of the signaling path-
ways were significantly downregulated and 6 upregulated 
in ASD when the relative information flow was analyzed 
statistically (Fig.  3a; p < 0.05, Wilcoxon test). How-
ever, we should mention that the differences (i.e., effect 
sizes)  for most signaling are relatively small (Additional 
file 4: Table S3). Close examination of the changes in rela-
tive contributions of individual cell types with respect to 
both outgoing and incoming signaling in ASD and con-
trol datasets illustrates this better (Fig. 3b and c). It also 
indicates that the two largest reduced signaling pathways 
(ncWNT and THBS) are due to significant decreases in 
incoming signaling in multiple cell types. This close-in 
analysis further suggests that excitatory and inhibitory 
neurons are the major sources of signaling senders, while 
both neurons and glial cells participate as receivers. The 

contribution of microglia to information flow, however, 
appears low in this analysis.

In summary, our global analysis identified cell-cell 
communications and intercellular signaling that are 
potentially disrupted either between specific pairs of cell 
types or across many cell types in the ASD brains.

Sample‑by‑sample CCC analysis in PFC
The above global approach is standard in CellChat and 
is also the most common design in cell-cell communi-
cation analysis by other software (i.e., only making two 
sample comparisons). One concern is that it did not 
account for the potential differences among individual 
ASD or control samples. Furthermore, the computation 
would count interactions between cells in two differ-
ent brains. Thus, we decided to apply a complementary 
sample-by-sample approach (Fig.  1). In essence, we 
used CellChat to obtain strengths of L-R interactions or 
score signaling pathways for each of the 13 ASD and 10 
control PFC samples, as above, but then applied Wil-
coxon test to determine if the sample-level strengths 
were significantly different between ASD and control 
groups. The numbers of cells for each ASD and control 
samples can be found in Additional file  1: Table  S1b, 
while the pathway strengths for individual samples are 
in Additional file 5: Table S4a, including the mean val-
ues for ASD and controls, the standard deviation, and 
the differences as fold changes. We focused our analysis 
on pan-cell type signaling. In addition to the 68 iden-
tified by the above global approach, 24 others were 
detected. Of these 92 pathways, 10 were specific from 
controls and 3 unique to ASD. Pathways and genes 
belonging to each of them are listed in Additional file 5: 
Table S4b. After pathways found in less than 5 samples 
were excluded, 74 were retained for ASD vs control 
comparison. A principal component analysis (PCA) 
of the samples based on the scores of the 74 signaling 
showed that the first and second components explained 
44.7% of the variation (Additional file  3: Fig. S3), with 
noticeable but not large separation between the ASD 
and control samples, indicating a small shifting but 
no major rewiring of intercellular signaling flow in the 
two groups, consistent with results above. To gain bet-
ter insight into the underlying molecular interactions, 
we decided to analyze all the L-R interactions in the 74 
signaling by Wilcoxon test. Although only 13 interac-
tions remained significant at 10% FDR upon multiple 
testing correction, the results indicated that, at the 
nominal p < 0.05, 88 L-R interactions in these signal-
ing were significantly different between ASD and con-
trols (Fig.  4). These 88 L-R interactions were mapped 
to 32 signaling pathways (Additional file 5: Table S4c), 
25 and 7 of which were down- and upregulated in the 
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ASD PFCs, respectively, indicating that the other 42 
signaling did not have significantly differential L-R 
interactions by our method. The data in Fig. 4 also help 
explain the apparent difference between an increase 
in pairwise cell-cell interaction strengths (Fig.  1c) and 

a reduction of global CCC information flow in ASD 
(Fig.  3a); there were more individual L-R interactions 
showing decreased strength (blue in Fig.  4), but they 
involved fewer cell types than those interactions exhib-
iting increased strength (red in Fig. 4).

Fig. 3  Comparison of pan-cell type signaling networks in PFC. a Pan-cell type relative information flow showing signaling pathways identified in 
ASD PFC and controls. The pathways with greater information flow in ASD or controls were in cyan or red, respectively, with black indicating no 
significant differences. b and c Dot plots showing the difference in relative contribution of each cell type to outgoing (b) or incoming (c) signaling 
in ASD vs controls. Signaling on the left (a) with no difference was not included in (b) or (c)
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From the 32 differentially active pathways, we 
selected six with strong literature support for their 
potential involvements in ASD to illustrate our find-
ing (see “Discussion” for details). They are neurexin 
(NRXN), fibroblast growth factor (FGF), contactin 
(CNTN), netrin-G ligand (NGL), neuregulin (NRG), 
and pleiotrophin (PTN) signaling. A chord diagram 
reflecting differences in interaction strengths between 
ASD and control samples is drawn for each path-
way (Fig.  5), including the directions of changes and 
the cell types involved. For each of the pathways, we 
also included the genes if their expression levels were 
determined to be significantly different between ASD 
and controls cells by Velmeshev et  al. [23]. Among 
the six, cell-cell interactions in NRXN and NRG were 
mostly increased in ASD while decreased for FGF and 
PTN, but similar numbers of increased and decreased 
interactions were observed in the other two pathways. 
Details of the strengths for each sample, cell pair, and 
pathway can be found in Additional file 6: Table S5.

To test how our result may be affected by the data-
base of ligand/receptors, as it was reported to be a key 
factor [33], we replaced the CellChat L-R interactions 
with those from CellPhoneDB (v2.0) [31] and repeated 

the above ASD vs control comparison. This resulted in 
43 signaling pathways, all of which were detected in the 
above analysis using CellChat database. Among them, 
12 pathways showed a statistically significant difference 
between control and ASD (Wilcoxon test; p < 0.05).

In short, the results from our sample-by-sample 
approach strengthen our findings by the global method. 
Together, they highlight important intercellular signal-
ing potentially disrupted in ASD PFC and demonstrate 
the advantage of CCC-focused analysis over conventional 
different gene expression analysis, as it can uncover 
altered intercellular signaling that would otherwise be 
missed in the latter.

Function enrichment analysis of the disrupted cell‑cell 
signaling
To better understand the roles of the disrupted cell-cell 
signaling, we carried out GO enrichment analysis, using 
165 genes in the 32 dysregulated pathways (Additional 
file 5: Table S4d). At FDR < 0.05, we found that the top 
“biological process”-related GO terms were axonogen-
esis, extracellular matrix organization, peptidyl-tyrosine 
phosphorylation, synapse organization, regulation of cell 
morphogenesis, among others (Fig.  6a) The enrichment 

Fig. 4  Heatmap for differential L-R interactions (y-axis) identified for individual pairs of cell types (x-axis) from the sample-by-sample approach
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analysis was reproduced by another software, ClueGO 
[35], which also reduced redundancy in the enriched 
terms. As shown in Fig.  6b, ClueGO was able to iden-
tify 8 clusters of GO terms, in which the main cluster, 
covering 27% of the terms, was related to axon develop-
ment. This cluster is composed of neurogenesis, axon 
guidance, generation of neurons, neural crest migration 
or axon development terms, and pathways with impor-
tant roles in neurodevelopmental disorders. The sec-
ond most enriched cluster (24% of terms) was “enzyme 
linked receptor protein signaling pathway,” in which 
terms such as MAPK cascade, ERK1, and ERK2 cascade 
or protein tyrosine kinase activity were included. Regu-
lation of neuron projection development covered 8% of 
the terms, comprising key pathways related to develop-
mental disorders such as regulation of neurogenesis, 
positive regulation of axonogenesis, or regulation of 
nervous system development. Positive regulation of epi-
thelial cell proliferation, biomineral tissue development, 

peptidyl-tyrosine phosphorylation, and vasculature 
development accounted for 9%, 5%, 4%, and 4% of terms, 
respectively. Taken together, the GO enrichment results 
are consistent with previous findings that have implicated 
these same cellular processes in ASD and other psychiat-
ric conditions [10, 11, 13] but put a more clear connec-
tion to the important roles of cell-cell communication.

Functional connection of the disrupted cell‑cell signaling 
to ASD risk genes
In order to study how the disrupted cell-cell communica-
tion signaling is linked to ASD genetic risk, we applied 
the STRING database to construct a protein-protein 
interaction network. It identified 1076 edges connect-
ing 153 of the 165 genes in the disrupted CCC signaling 
(ranging from 1 to 30 connections) to 239 ASD risk genes 
in the SFARI database (Fig. 7a). In addition, the network 
has an average local clustering coefficient of 0.38 and 

Fig. 5  Chord diagrams plotting signaling strength differences between ASD and control PFC. The lines represent changes in L-R interaction 
strengths, with the statistically significantly different ones colored as intense red or blue, for increase or decrease in ASD, respectively. Light red or 
light blue for small changes not reaching statistical significance. Gray lines for no changes. Genes identified as differentially expressed in Velmeshev 
et al. [23] study were indicated in the corresponding cell type(s). The color bars in the inner circles indicates targeting cell types of the outgoing 
signaling while noncolor part for incoming signaling
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Fig. 6  Function enrichment analysis of genes in the dysregulated CCC signaling. a Dot plot showing the enriched GO terms. b Network connecting 
GO terms with sharing genes. Nodes are enriched GO terms, while the edges represent the extents of genes shared between two terms

Fig. 7  Connection between brain disorder risk genes and genes in the dysregulated CCC signaling. a Protein interaction network connecting 
dysregulated CCC signaling genes (blue) and ASD risk genes (white) in SFARI database. b Dot plot showing overlapping results of dysregulated 
signaling genes with lists of genes implicated in different brain disorders



Page 13 of 20Astorkia et al. Journal of Neurodevelopmental Disorders           (2022) 14:29 	

interaction enrichment values of 0.05, indicating overall 
strong connections among the genes (i.e., nodes).

Enrichment for gene sets related to brain disorders
To further address how disruption of the CCC signaling 
may be related to ASD, we intersected the 165 genes with 
lists of genes associated with ASD, schizophrenia (SCZ), 
intellectual disability (ID), bipolar disorder (BD), and 
attention-deficit hyperactivity disorder (ADHD) (Addi-
tional file 7: Table S6) and tested for significance of over-
representation (Fig.  7b). Among the genes overlapping 
with ASD lists, CNTNAP2, LRRC4C, NLGN2, NLGN3, 
NRXN1, NRXN2, NRXN3, and PLXNA4 are considered 
as ASD risk genes with “high confidence” in SFARI data-
base, due to multiple studies linked them to autism and 
other neurodevelopmental disorders [13, 46–50]. Also, 
significant enrichment was found with bipolar disorder 
(odds ratio (OR) = 2.7) and ADHD (OR = 2.4) gene lists, 
similar to previous findings [12, 51]. In addition to the 
ASD genes, SEMA5A or NRG1 are also very interesting. 
Semaphorin 5A gene has been linked to autism [52], and 
additionally, the failure of its expression has been linked 
to abnormal development of the axonal connections in 
the forebrain [53]. Decreased expression of neuregulin 1 
has been linked to orchestration of a number of execu-
tive functions in ASD patients [54], as well as SCZ and 
bipolar disorders [55]. Regarding ADHD-enriched genes, 
Krumm et al. [56] related 3 semaphorin receptor protein 
(PLXNA3) to ASD. This receptor is known to be impor-
tant for axon pathfinding in the developing nervous sys-
tem [57]. Even though there were overlaps of genes in the 
ID and SCZ lists, no statistical significance was found 
for the overlap between the 165 CCC genes and genes 
related to these two disorders.

Relationship between disrupted intercellular signaling 
and differential gene expression programs
To address how disruption of the CCC signaling may 
lead to downstream gene expression difference in the 
ASD brains, we studied how they could be linked to the 
pathways enriched among DEGs in each of the cell types 
in the ASD brains. To do this, we first ranked genes by 
their expression fold changes between ASD and con-
trol cells in each of the 17 cell types and then performed 
GSEA (Additional file  8: Table  S7). From the result, we 
selected and showed the enriched GO terms contain-
ing at least one gene in our disrupted CCC signaling 
(Fig. 8), resulting in 58 GO terms linked to 14 signaling 
pathways. Fourteen of the GO terms were more active 
in the controls, mostly involving nonneuronal cells. Oli-
godendrocytes showed 8 enriched pathways, including 
transmission of nerve impulse, regulation of glial cell 
differentiation, and cell chemotaxis. Similarly, AST-PP 

was enriched in integrin-mediated signaling pathways 
and regulation of smooth muscle cell differentiation. GO 
terms more active in ASD samples were mainly seen in 
neuronal cells, i.e., IN-SST, IN-SV2C, IN-VIP, L2/3, and 
Neu-NRGN-I. In total, 45 GO terms more active in ASD 
neurons were connected to disrupted CCC signaling, 
including synapse assembly, neuron cell adhesion, learn-
ing, regulation of neuron differentiation, postsynaptic 
specialization organization, receptor clustering, or syn-
aptic signaling. Taken together, these results indicate that 
disrupted intercellular communications can be linked to 
downstream intracellular pathways and gene expression 
programs dysregulated in both neurons and glia cells in 
the ASD brains.

Spatial co‑expression of ligands and receptors
Our analysis assumed that all  cells of the same type 
express the same ligands and receptors, by using snRNA-
seq data that did not directly include spatial locations of 
cells, although the excitatory neurons did contain brain 
layer information. Spatial location, however, could be an 
important factor in cell-cell communication. To address 
this, we analyzed the spatial transcriptomics data from 
Maynard et al. [41], which applied 10× Genomics Visium 
platform to generate a map of gene expression in the six-
layered dorsolateral prefrontal cortex of an adult human 
brain. In their study, the  authors have already corrobo-
rated their spatial registration to the cell-type annota-
tion in the snRNA-seq data used in our analysis. Here, we 
wanted to determine if the spatial expression levels of the 
ligand-receptor pairs are more correlated than expected 
by chance. The data indicate that most of the randomly 
paired L-R had correlation coefficients near “0,” but the 
interacting pairs identified by CellChat showed signifi-
cantly larger correlations, using spatial data across all 
brains or the subset in defined layers (Additional file  3: 
Fig. S4a/b). The correlation shifted to both positive and 
negative perhaps because CellChat interaction includes 
soluble agonists, antagonist, and co-stimulatory, and co-
inhibitory cofactors.

Cell‑cell communications in anterior cingulate cortex
We present our findings for PFC above, but we have also 
carried out analyses for the anterior cingulate cortex 
samples using our global approach. Similar to PFC, most 
of the cell-cell interactions in ACC also occurred through 
neuronal cell types (e.g., L5/6-CC and L2/3 excitatory 
neurons), while microglia and Neu-NRGN-I contributed 
the least. In contrast to PFC, our global approach found a 
mixture of lost and gained pairwise interactions in the 17 
ASD vs controls as mentioned above (Fig. 1d; Additional 
file  3: Figure S5a). L4, Nue-mat, Neu-NRGN-I, Neu-
NRGN-II, and AST-PP cell types showed an increased 
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Fig. 8  Connection between cell-type ASD-enriched pathways and dysregulated CCC signaling. Dot plot showing enriched pathways from GSEA 
for individual cell types, with red and blue for higher activities in ASD and control PFC, respectively. The right column lists the corresponding 
dysregulated signaling from CCC analysis
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number of interactions, acting as receiver cell types, 
while the remaining cell types showed decreased inter-
actions in ASD. Similar to PFC, CCC strengths (Fig. 1e; 
Additional file  3: Fig. S5b) were increased in ASD ACC 
for most of the cell types. For pan-cell type signaling net-
work, CellChat identified 70 unique signaling pathways 
in ACC, with 5 specific to controls (ANGPT, CD226, 
CD99, ENHO, and ncWNT) and 4 to ASD (EDN, FN1, 
PTH, and TENASCIN) (Additional file  9: Table  S8). In 
Additional file  3: Fig. S6, we show the relative informa-
tion flow for these pathways, with 37 significantly up- and 
16 downregulated in the ASD. Only 13 pathways showed 
a decreased activity, while 5 showed increased activity in 
both ASD PFC and ACC. Further analysis compared the 
relative contributions from each cell type for outgoing 
and incoming signaling in ASD and control ACC, indi-
cating global similarity but noticeable changes for some 
pathways, such as CD99, ncWNT, or ANGPTL (Addi-
tional file 3: Fig. S7a/b).

Discussion
ASD is a neurodevelopmental disorder involving genetic, 
epigenetic, and environmental factors through various 
processes [3, 58]. At the cellular level, cell-cell signaling 
is critical. Using CellChat, we have performed a CCC 
analysis using previously published single cell datasets 
[23]. The availability of data from both ASD and con-
trols allowed us for the first time to systematically com-
pare cell-cell communications in ASD and control brains. 
Results from our multiple-level CCC analyses suggest 
that several cell-cell signaling pathways are potentially 
disrupted in the ASD brains, involving mostly neurons, 
but glial cells also contribute. Our findings are in line with 
a large body of literature that support the importance of 
cell-cell interactions in neurodevelopment and brain dis-
orders. For example, studies suggested that genes dysreg-
ulated in ASD were enriched in cell-cell communication, 
nervous system development, or cilia regulators or com-
ponents terms [10, 11]. Our computational analysis is 
based on the combined expression of ligands, receptors, 
and their cofactors in any pair of cell types. It is concep-
tually different from differential expression analysis based 
on individual genes. This can be seen in the results shown 
in Fig. 5, where many of the disrupted signaling pathways 
contain only few or no DEGs that were determined from 
the same datasets.

Also different from many other cell-cell commu-
nication studies, we applied a combination of global 
approaches and sample-by-sample approaches. While 
the former potentially has higher sensitivity (due to 
more cells included), the latter likely has better preci-
sion as it requires independent statistical supports from 
many samples. Nevertheless, the disrupted cell-cell 

communications and the corresponding signaling path-
ways from the two approaches generally agree, with 
nearly all in the global approach also found by sample-
by-sample approaches. For some signaling, the two 
approaches reported inconsistent results, probably 
because the degree of changes between ASD and controls 
is moderate or small, but further study will be needed. At 
the signaling level, our study indicates that more cell-cell 
communications show increased activities or strengths in 
ASD, but those involved in fewer cell types are decreased. 
Genes in these differential CCC pathways were enriched 
for molecular pathways and cellular processes that play 
important roles in neurogenesis and neuron functions, 
as well as risk genes for ASD. In our global approach, we 
found a reduction of interaction numbers but a slight 
increase of interaction strengths in PFC (Fig. 1). As men-
tioned above, this “inconsistency” is likely technical  in 
computing, due to reduced expression of some poorly 
expressed ligands and receptors in ASD relative to con-
trols, resulting in missing interactions in ASD. Interest-
ingly, the numbers of total  genes detected in the ASD 
PFCs were also lower than those in controls (t-test, p 
< 0.05), suggesting that the reduction in interaction 
numbers could be a result of a global reduction in gene 
expression. This, however, is not related to sequencing 
depths or cell numbers because we did not find them to 
be statistically different between the ASD and controls.

We have explored a few alternative approaches to 
address reproducibility. In addition to the two com-
plementary approaches, we tried a “middle ground” 
approach by randomly grouping the PFC control and 
ASD samples into four each in the two conditions, ensur-
ing similar numbers of cells in the controls and ASD. We 
then applied our sample-by-sample design to perform 
a 4 vs 4 comparison. This identified 85 of the 92 path-
ways in our original 13 vs 10 analysis, with the reduc-
tion expected from a smaller sample size. The significant 
different pathways at nominal p < 0.05 were almost the 
same (Additional file 10: Table S9). Additionally, we per-
formed a subsampling analysis by randomly selecting 
50% of the cells (repeating 10 times). Analyzing the data 
by our global approach showed that the changes in L-R 
strengths between ASD and controls were highly cor-
related to what were obtained using all cells (Additional 
file 3: Fig. S8). Furthermore, we tested two other software 
(NATMI and CellPhoneDB) [29, 31] and obtained signifi-
cantly overlapping but not identical results, with the dif-
ference largely due to differences in both the collection of 
ligand receptors and how interactions are quantified, as 
discussed by others [33]. Finally, as discussed in “Results,” 
we applied CellChat on the CellPhoneDB L-R database 
and identified 43 of the 92 pathways using the Cell-
Chat database. Note that some major pathways, such as 
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NRXN, were not in the CellPhoneDB. With these results, 
we believe that CellChat is appropriate for our current 
analysis, but a reanalysis would be valuable when new 
and improved CCC software and data become available.

To put our results in a broader literature content, below 
we discuss key signaling pathways with strong literature 
support for their association with ASD or abnormal neu-
rodevelopment: NRXN, FGF, CNTN, NGL, NRG, and 
PTN pathways (Fig. 5).

The neurexin pathway is composed of NRXN1, NRXN2, 
NRXN3, NLGN1, NLGN2, and NLGN3 genes, all of 
which except NLGN1 are identified as “high confident” 
ASD genes in SFARI database. Many studies have also 
linked these genes closely to ASD and other neurodevel-
opmental disorders. Wiśniowiecka-Kowalnik et  al. [59] 
described three CNVs within NRXN1 in subjects from 
three families showing ASD, anxiety and depression, 
developmental delay, and speech delay. Furthermore, 
Pinto et  al. [60] detected an excess of exonic NRNX1 
CNVs in 996 cases compared to 4964 controls. How-
ever, Wang et al. [47] did not find an association between 
NRXN1 and ASD, suggesting heterogeneity of the dis-
order, but their study associated NRXN2 and NRXN3 to 
ASD and specific alleles to ASD severity. On the recep-
tor side, a nonsense variant in NLGN2 was reported 
in a patient with severe anxiety, obsessive-compulsive 
behaviors, autism, short attention span, global develop-
mental delays, hyperphagia, obesity, macrocephaly, and 
dysmorphic features [48]. Similarly, two studies found 
that intronic NLGN3 variants were potentially linked to 
ASD [61] with a male bias [62]. Furthermore, overexpres-
sion of both NRXN and NLGN can lead to an alteration in 
excitatory/inhibitory ratio due to an increase in the num-
ber of synapses [63].

In mammals, there are 18 different FGF ligands and 4 
FGF receptors (FGFRs), many of which regulate cell pro-
liferation, cell division, and neurogenesis [64]. Here, we 
identified 12 that showed (5 after Wilcoxon test) a dif-
ference between ASD and controls, all of which had a 
decreased strength in ASD PFC (Fig. 5). FGF1 and FGF2, 
FGFR1, FGFR2, and FGFR3 were involved. While FGFR1 
and FGFR4 are mainly expressed in neurons, FGFR2 and 
FGFR3 are expressed in astrocytes and oligodendrocytes 
[65]. In accordance with that, the only significant FGF1-
FGFR1 interaction was found between L5/6 and IN-PV 
neurons, while the interactions with FGFR2 and FGFR3 
receptors were found with astrocytes and oligodendro-
cytes as receiver cells. The FGF system is known to be 
involved in different brain-related disorders. Esnafoglu 
and Ayyıldız [66], for example, reported significantly 
lower levels of FGF2 in ASD children. Additionally, 
Evans et  al. [67] linked decreased expression of FGF1, 
FGF2, FGFR2, and FGFR3 in cortical areas to depressive 

disorder, while Liu et al. [68] and Wang et al. [69] linked 
FGF2 and FGFR2, respectively, to bipolar disorder.

The contactin pathway (CNTN), on the other hand, 
showed significant L-R interactions between most pairs 
of the cell types. Genes in these significant interactions 
were CNTN1, CNTN2, CNTNAP1, CNTNAP2, NRCAM, 
L1CAM, and NFASC. Conactin-1 and Contactin-2 are 
important for neuron-glia interactions, and they regulate 
neuronal migration and axon guidance [70]. However, no 
direct link has been found to ASD [71]. Its interaction 
partners, CNTNAP2 and NRCAM, on the other hand, 
were identified as syndromic and strong candidate and as 
gene with suggestive evidence, respectively. CNTNAP2 is 
a very well-known gene in ASD, and brains with the risk 
variants show more connectivity between the frontal cor-
texes, while connections dimmish between more distant 
regions [72]. Also, Li et  al. [73] suggested susceptibility 
of the gene in the Chinese Han population, while more 
recently, Nascimento et  al. [74] linked a single-nucleo-
tide polymorphism (SNP) of CNTNAP2 in a Brazilian 
population. Cntnap2 knockout rats exhibited deficits in 
sociability and social novelty, exaggerated acoustic startle 
responses, increased avoidance to sounds, and a lack of 
rapid audiovisual temporal recalibration [75], all of which 
are related to the symptoms in ASD.

The interaction between leucine-rich repeated-con-
taining (LRRC) protein 4B, also known as NGL-3, and 
receptor-type tyrosine-protein phosphatase (FPTPRF/
LAR) was the only one showing a significant change in 
the Netrin-G ligand (NGL) pathway in ASD PFC. NGL 
are synaptic adhesion molecules that regulate synapse 
development, function, and plasticity, with three family 
members: NGL-1/LRRC4C, NGL-2/LRRC4, and NGL-3/
LRRC4B [76]. Lee et al. [77] suggested that NGL-3 regu-
lates brain development and locomotive and cognitive 
behaviors, among others. However, no data suggests a 
link between NGL-3 gene and ASD. The LAR complex, 
on the other hand, is part of the RPTPs large family 
known to be involved in broader functions in the central 
nervous system [78]. Even though other RPTP complexes 
have been associated with ASD [60], no direct informa-
tion exists for LAR complex.

Neuregulin (NRG) complexes, NRG1/2/3/4, play 
important roles in many neurological disorders such as 
brain trauma, spinal cord injury, and SCZ [79, 80]. All 
isoforms contain a fragment encoding epidermal growth 
factor (EGF)-like domain that enables the interaction 
with ErbB receptor tyrosine kinases [81]. Many studies 
have been published about these interactions regard-
ing important functions in cell differentiation, neuronal 
migration, or synapse formation [82, 83]. Three inter-
actions between these complexes were among our sig-
nificant results: ligands NRG1, NRG3, and NRG4 and 
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receptor ErbB4. Many studies link the NRG1 complex to 
ASD. Abbasy et al. [54], for example, reported that down-
regulation of the complex is linked to deficits in response, 
vigilance, and working memory. Likewise, Esnafoglu [84] 
suggested that NRG1-ErbB signal system may contribute 
to the disorder, and Dabbah-Assadi et al. [85] suggested 
that NRG1-ErbB4 pathway disruption can lead to cog-
nitive dysfunction. While NRG2 and NRG3 complexes 
have not been linked to ASD, many reports support their 
link to other neurodevelopmental disorders such as SCZ 
and bipolar disorder [86, 87].

In the PTN pathways, the unique ligand from our 
analysis was pleiotrophin protein, an extracellular 
matrix-associated protein known to be involved in 
neurodevelopmental processes such as cellular pro-
liferation, early presynaptic, or postsynaptic speciali-
zation [88]. A previous study [89] demonstrated that 
PTN knockout mice showed disruptions in cognitive 
and affective processes. Another study suggested that 
both PTN and its receptor, protein tyrosine phos-
phatase receptor type Z1 (PTPRZ1), could be potential 
candidate genes for ASD [90].

In addition to the above signaling pathways with litera-
ture support for their association to ASD, our unbiased 
overrepresentation analysis also found GO “biological 
processes” terms related to axonogenesis, extracellular 
matrix organization, peptidyl-tyrosine phosphorylation, 
synapse organization, or regulation of cell morphogen-
esis. Similarly, Gai et  al. [91] in their study of ASD risk 
genes from 631 autism subjects, 1162 parents, and 1775 
control children found enrichments in synaptic func-
tions, such as cell-cell signaling, transmission of nerve 
impulse, or neurotransmitter transport. Similar results 
were reported in an independent study [92]. In this study, 
112 ASD genes were selected for enrichment analy-
sis in mouse and human phenotypes. The results linked 
these genes to changes in brain and neuronal morphol-
ogy, electrophysiological changes, neurological changes, 
and higher-order behavioral changes. In a comparative 
study between ASD and SCZ [93], gene sets enriched in 
protein phosphorylation/kinase activity, among others, 
were found for ASD. Furthermore, this study suggested 
an etiological overlap of ASD and SCZ since 8% of the 
clinically significant CNVs were shared between the two 
disorders. This comes as no surprise since a large epide-
miological study [94] has found that a family history of 
SCZ is a risk factor for ASD. Moreover, in 50% of ASD 
cases, there is an association with intellectual disability 
as well as comorbidity with other psychiatric disorders 
[58, 95]. In this regard, it is interesting that our analysis 
of the disrupted cell-cell communication genes found no 
enrichment with SCZ and ID genes but positive enrich-
ments for bipolar disorder, ADHD, and ASD.

In this study, cell-cell communication is inferred from 
the expression of protein-coding genes, thus not cap-
turing other signaling events in the brain, such as non-
protein molecules (e.g., neurotransmitters). Another 
limitation of the study, as in other cell-cell interaction 
studies based on scRNA-seq or snRNA-seq, lies in the 
lack of spatial information, as juxtracrine and paracrine 
signaling operate from 0 to 200 μm [96]. The application 
of spatial transcriptomic data will help, but that tech-
nology by itself is currently not able to provide single-
cell resolution data. However, one study applied spatial 
transcriptomics to investigate alterations occurring in 
tissue domains within a 100-μm diameter around amy-
loid plaques in Alzheimer’s disease and found altera-
tions consistent with disease pathogenesis [97]. As the 
technology advances and more data become available 
for ASD, we should be able to improve the methods in 
this study, as discussed in a recent review [96]. In addi-
tion, since the snRNA-seq data were from postmortem 
brains, our findings by themselves cannot distinguish 
if the CCC signaling disruption contributes directly to 
ASD pathogenesis or is a result of the brain’s response 
to ASD conditions. Lastly, signaling in the brain is con-
ducted by proteins, while our analysis was based on 
RNAs.

Conclusions
In this study, we perform a comprehensive bioinfor-
matics analysis to characterize the cell-cell communi-
cation changes in the brains of autistic subjects. We 
found multiple intercellular signaling pathways that 
are potentially altered in autism. Genes in these altered 
signaling pathways show a significant enrichment for 
genes involved in both ASD risk and with intracellular 
molecular pathways that are putatively dysregulated in 
multiple brain cell types.
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