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Abstract 

Background:  Numerous genes are implicated in autism spectrum disorder (ASD). ASD encompasses a wide-range 
and severity of symptoms and co-occurring conditions; however, the details of how genetic variation contributes 
to phenotypic differences are unclear. This creates a challenge for translating genetic evidence into clinically useful 
knowledge. Sleep disturbances are particularly prevalent co-occurring conditions in ASD, and genetics may inform 
treatment. Identifying convergent mechanisms with evidence for dysfunction that connect ASD and sleep biology 
could help identify better treatments for sleep disturbances in these individuals.

Methods:  To identify mechanisms that influence risk for ASD and co-occurring sleep disturbances, we analyzed 
whole exome sequence data from individuals in the Simons Simplex Collection (n = 2380). We predicted protein 
damaging variants (PDVs) in genes currently implicated in either ASD or sleep duration in typically developing chil‑
dren. We predicted a network of ASD-related proteins with direct evidence for interaction with sleep duration-related 
proteins encoded by genes with PDVs. Overrepresentation analyses of Gene Ontology-defined biological processes 
were conducted on the resulting gene set. We calculated the likelihood of dysfunction in the top overrepresented 
biological process. We then tested if scores reflecting genetic dysfunction in the process were associated with parent-
reported sleep duration.

Results:  There were 29 genes with PDVs in the ASD dataset where variation was reported in the literature to be 
associated with both ASD and sleep duration. A network of 108 proteins encoded by ASD and sleep duration candi‑
date genes with PDVs was identified. The mechanism overrepresented in PDV-containing genes that encode proteins 
in the interaction network with the most evidence for dysfunction was cerebral cortex development (GO:0,021,987). 
Scores reflecting dysfunction in this process were associated with sleep durations; the largest effects were observed 
in adolescents (p = 4.65 × 10–3).

Conclusions:  Our bioinformatic-driven approach detected a biological process enriched for genes encoding a 
protein–protein interaction network linking ASD gene products with sleep duration gene products where accu‑
mulation of potentially damaging variants in individuals with ASD was associated with sleep duration as reported 
by the parents. Specifically, genetic dysfunction impacting development of the cerebral cortex may affect sleep by 
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Background
Autism spectrum disorder (ASD) is characterized by 
impairments in social interactions and social commu-
nication, as well as a pattern of restricted and repetitive 
interests and/or behaviors [1]. ASD etiology has con-
tributions from common and rare variations affecting 
numerous genes [2, 3]. In addition, many individuals with 
ASD have co-occurring conditions that are important 
to recognize when developing treatment regimens (e.g., 
intellectual disability, sleep disturbances) [4].

Sleep problems, notably insomnia-related symptoms, 
are some of the most common issues reported in indi-
viduals with ASD [5]. Evidence indicates that sleep prob-
lems are associated with symptom severity [6, 7] and that 
treating sleep disturbances effectively can improve other 
daytime symptoms [8]. Identifying more personalized, 
effective treatment for sleep problems in individuals with 
ASD is an important area of research. By understanding 
the causes of sleep problems in different individuals with 
ASD, there is an opportunity to develop more effective 
approaches for treating one of the most prevalent condi-
tions observed to co-occur with ASD.

Evidence indicates that numerous genetic loci are asso-
ciated with multiple traits [9] and that, in lieu of sharing 
specific genes and variants, many complex diseases are 
connected by similar underlying molecular pathways 
[10]. Many of the same genes with ASD-associated vari-
ation have evidence for pleiotropic effects on regulation 
of sleep and circadian rhythms [11–15]. Furthermore, 
ASD candidate genes encode proteins that function in 
the same biological systems that relate to the functions 
of sleep to promote plasticity and connectivity during 
neurodevelopment [16]. For example, numerous genes 
cited in connection with ASD as well as those associated 
with variability in sleep-related traits encode proteins 
important to synaptic function; sleep is also evidenced to 
be important for synaptic plasticity [16–18]. Identifying 
pleiotropic mechanisms connecting ASD and insomnia-
related traits may inform future work focused on estab-
lishing novel targets for sleep interventions in these 
patients.

We hypothesized that there are pleiotropic genetic 
mechanisms connecting risk for ASD with variability in 
sleep duration and that scores predicting dysfunction in 
these mechanisms would associate with insomnia-related 

symptoms in individuals with ASD. Importantly, large 
datasets are necessary to have power to detect most 
genetic effects influencing ASD and sleep-related infor-
mation in large ASD datasets are limited to parent 
reports. Our previous work comparing sleep habit ques-
tionnaires to actigraphy measurements has shown that 
sleep duration (SD) is the most reliable insomnia-related 
trait that can be derived from parent report [19]. To 
determine if dysfunction in pleiotropic genetic mecha-
nisms connecting ASD and sleep influence sleep dura-
tion in individuals with ASD, we first identified predicted 
damaging variants in candidate genes for ASD (https://​
gene.​sfari.​org/) and for childhood sleep duration [20] 
using WES data from the Simons Simplex Collection 
(SSC; [21]). We then predicted a protein–protein interac-
tion (PPI) network connecting ASD gene products with 
SD gene products and identified Gene Ontology bio-
logical processes that were enriched for genes encoding 
proteins in the PPI network. We developed an equation 
to calculate the likelihood of genetic dysfunction in the 
significantly enriched biological processes and tested for 
associations with parent-reported sleep durations from 
the SSC. We found that incorporating evidence from 
predicted protein damaging variants located in ASD and 
SD candidate genes with evidence for protein–protein 
interactions revealed specific mechanisms associated 
with sleep duration in individuals with ASD. Notably, 
the approaches described and reported scores can be 
adapted to analyze WES data for different co-occurring 
conditions in ASD and other intellectual and develop-
mental disabilities.

Methods
Prediction of protein damaging variants using 
whole‑exome sequence data
To detect genes with potential pleiotropic effects under-
lying expression of ASD with co-occurring sleep dis-
turbances, we first identified currently implicated ASD 
and sleep duration (SD) candidate genes with predicted 
damaging variants (PDVs) in the Simons Simplex Collec-
tion (SSC) dataset provided by the Simons Foundation 
(SSC Whole-exome Sequences 3 (NextCODE)). The SSC 
represents the largest collection of simplex ASD fami-
lies, with one affected child (i.e., proband) and at least 
one unaffected sibling. Sex discrepancies were identified 

disrupting sleep homeostasis which is evidenced to be regulated by this brain region. Future functional assessments 
and objective measurements of sleep in adolescents with ASD could provide the basis for more informed treatment 
of sleep problems in these individuals.
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using both the ratio of heterozygous SNVs on the X chro-
mosome compared to autosomes and coverage of the Y 
chromosome gene, SRY. There were 12 individuals with 
unclear gender assignments where genetic sex could not 
be determined or who had 47,XYY or 47,XXX; these 
individuals were excluded from analyses. The final analy-
sis dataset included 2380 individuals; this was 86% male 
and 79% reported white (Table S1).

ASD candidate genes were those included in the most 
recent update (2021 Q2) of the Simons Foundation 
Autism Research Initiative human gene database (SFARI, 
https://​gene.​sfari.​org/​datab​ase/​human-​gene [22, 23]). SD 
candidate genes were derived from genome-wide studies 
of an independent population of children with no evi-
dence of ASD. Specifically, genes were selected based on 
gene-based test results—available via the Sleep Disorder 
Knowledge Portal (https://​sleep.​hugea​mp.​org/) that were 
conducted using summary statistics from a genome-wide 
association study (GWAS) of sleep duration in more 
than 11,000 assumed typically developing children, ages 
2–13 years old, with European ancestry [20].

SNVs and indels (< 200  bp) were selected from previ-
ously processed WES data. Genomic locations were 
based on Human Genome Build GRCh37/hg19. SNVs 
and indels were previously called across all 22 auto-
somes and both sex chromosomes using the Genome 
Analysis Toolkit (GATK; [24]) and FreeBayes [25] soft-
ware. Detailed information can be found in Iossifov et al. 
2014 [26]. Quality control (QC) thresholds were set at a 
depth ≥ 8 reads, genotype quality of ≥ 20, and exclusion 
of variants not passing GT filter criteria. Validated CNVs 
previously reported in Sanders et  al. [27] and Krumm 
et  al. [28] were also included. Bedtools [29] was used 
to identify regions of overlap between CNVs reported 
across these previously published studies.

To assess the likelihood that a variant was damaging to 
the protein-coding gene products, we ran Variant Effect 
Predictor (VEP, [30]) and prioritized SNVs and indels 
with consequences that were highly likely to be damaging 
(i.e., splice site alterations, gains or losses of stop codons, 
loss of start codons, or frameshifts). Nine additional pre-
diction algorithms were run using filter-based annota-
tion from ANNOtate VARiation (ANNOVAR) software 
[31]. Algorithms included in ANNOVAR that were used 
to predict damaging variants were (1) sorts intolerant 
from tolerant (SIFT) based on sequence homology and 
the physical properties of amino acids[32]), (2) polymor-
phism phenotyping v2 (Polyphen-2) HVAR based on 
structural and comparative evolutionary considerations 
[33], (3) mutation taster based on protein features, geno-
type frequencies, evolutionary conservation, splice-site 
changes, and mRNA stability [34], (4) mutation assessor 
based on predicted specificity residues [35], (5) likelihood 

ratio test (LRT) based on evolutionary conservation 
[36], (6) functional analysis through hidden Markov 
Models (FATHMM-MKL) based on experimentally vali-
dated functional elements within the human genome 
and sequence homology [37], (7) protein variation effect 
analyzer (PROVEAN) based on sequence homology 
[38], (8) MetaLR which is a meta predictor trained on an 
ensemble of approaches [39], and (9) Mendelian clinically 
applicable pathogenicity (M-CAP) which is also a meta 
predictor trained on an ensemble of approaches [40]. For 
additional summary-level details on these as well as other 
available in silico predictors please refer to Dong et  al. 
[39] and Jagadeesh et al. [40]. The following equation was 
used to calculate the possibility a variant was damaging:

where PDV = predicted damaging vari-
ant;FD = ((D − B)+ 1))/(N + 1) where FD = fre-
quency of damaging predictions, D = algorithms calling 
the variant damaging, B = algorithms calling the vari-
ant benign, N = total number of algorithms providing 
a prediction, and 1 = constant accounting for variants 
being preselected using VEP, and Z = zygosity (het-
erozygous = 1, homozygous = 2).FD scores ranged 
from − 0.8 − 1.0 with a negative score indicating the vari-
ant was more often predicted benign. Considering the 
focus was on deleterious variants, negative FD scores 
were assumed to be zero. Males with heterozygous X 
chromosome variants in pseudoautosomal regions (PAR) 
were weighted as autosomal variants and those located 
outside of PAR1 and PAR2 were considered homozy-
gous. CNVs encompassing portions of the coding (i.e., 
exonic, splice-site) and proximal promoter (i.e., 5′-UTR) 
regions of genes were given weights equal to SNVs and 
indels with the strongest likelihood of being damaging 
and assumed heterozygous. To distinguish de novo from 
inherited variants, we used previously published data 
[27].

Prediction of pleiotropic biological processes connecting 
ASD and SD
We then predicted protein–protein interactions 
between PDV-containing ASD candidate proteins 
and PDV-containing SD candidate proteins using 
STRINGdb v11 [41]. Overrepresentation analyses were 
conducted comparing genes encoding ASD-related pro-
teins with evidence for direct interactions with proteins 
encoded by SD genes in Gene Ontology (GO) biologi-
cal processes [42, 43] to all human protein coding genes 
included in Ensembl release 99. The weight01 algo-
rithm from the TopGO package version 2.38.1 was used 
to perform overrepresentation analyses [44, 45]. The 
significance was determined using Fisher’s exact test; 

PDV = FD × Z
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the threshold was set at a false discovery rate-adjusted 
α < 0.05. GO term definitions were based on AmiGO 2 
version 2.5.13, GO version 2020–11-90;  doi:10.5281/
zenodo.4281619 [46]. All genes with PDVs assigned 
to significantly overrepresented processes were then 
identified. The overlap among PDV-containing genes 
assigned to different significantly overrepresented bio-
logical processes was visualized using the UpSetR pack-
age v1.4.0.

Overrepresentation analyses were also conducted 
to determine if the significance of results for GO bio-
logical processes that were enriched for genes encoding 
proteins in the ASD and SD PPI network were different 
when compared to results obtained with the entire can-
didate gene sets.

Calculation of overall biological process dysfunction
We developed the following equation to calculate 
scores reflecting the likelihood of dysfunction in overall 
biological processes:

where DBPX = dysfunction of a given biological pro-
cess—represented in the equation as “BPx”; ( PDV

GeneA
vn

) = the sum of the PDV scores for each distinct vari-
ant, represented in the equation as “vn”, identified in 
a given gene, represented in the equation as “GeneA”; 
( EBPGeneA

X
) is the sum of the frequencies of GO evi-

dence codes for each gene—where frequencies are 
based on evidence codes used for all genes assigned 
to the process—supporting assignment to the process, 
plus the number of “child term” biological processes 
that were in the same branch of the GO hierarchy as 
the significant “parent term”, divided by the total num-
ber of child terms included in the GO hierarchy for the 
process; and ( nGenesBPx) = the total number of genes 
assigned to the biological process.

To assess score distributions and normality assump-
tions, violin plots for DBP scores were plotted and Sha-
piro–Wilk’s tests conducted. DBP score correlations 
were calculated using pairwise Spearman’s rank cor-
relations (ρ), and distributions by process were visual-
ized with violin plots. In addition, the proportion of 
individuals with any evidence of dysfunction (DBP > 0) 
compared to no evidence of dysfunction (DBP = 0) was 
calculated; the process with the highest evidence of 
dysfunction was selected to test for associations with 
sleep-related traits—described below. The predicted 
ASD protein-SD protein interaction network of genes 
assigned to the selected overrepresented process was 
visualized using Cytoscape v3.8.2 [47].

DBPX = PDV
GeneA
vn × EBP

GeneA
X /nGenesBPx

Approach validation using random genes matched for ASD 
or SD gene features
To help validate that the approach was not simply iden-
tifying processes overrepresented for genes that more 
often generate false positive indel calls in WES due to 
molecular features, two random sets of genes were eval-
uated. Random gene set one was matched to ASD can-
didate genes, and random gene set two was matched to 
SD candidate genes. To match features across these gene 
sets, the mean guanine-cytosine (GC) content, transcript 
size, and the number of spliceoforms for the ASD and SD 
gene sets were calculated. Two random sets were then 
selected from all human protein coding genes included in 
Ensembl release 99, excluding the ASD and SD candidate 
genes, based on similar mean GC content, transcript size, 
and number of spliceoforms to their candidate gene set 
counterpart using the fuzzyjoin package v0.1.6 in R. Each 
random, feature-matched gene set reflected the same 
number of distinct genes that were included in the ASD 
(n = 1014) and SD candidate genes (n = 837). Molecular 
features of the final random sets were compared to the 
features of the candidate gene sets using t tests.

We then ran our analysis pipeline described above on 
randomly selected genes as follows: (1) identified PDVs in 
random gene set matched to ASD and compared the total 
number of genes with PDVs in the random ASD-matched 
set to the ASD set as well as the (2) identified PDVs in 
random set matched to SD and compared the total num-
ber of genes with PDVs in the random SD-matched set to 
the SD set, (3) predicted PPI between ASD-matched ran-
dom genes and SD-matched random genes, and (4) ran 
overrepresentation analyses comparing random genes 
with PDVs in PPI to the entire gene universe.

Tests for associations between biological process genetic 
risk scores and sleep duration
Linear least squares regression was used to test if the 
DBP score with the most evidence for dysfunction was 
associated with parent-reported sleep duration avail-
able in proband medical history intakes provided by the 
SSC for a portion of the dataset (n = 2288 with WES and 
sleep data). For information on medical history data col-
lection see Fischbach and Lord, 2010 [21]. Sleep duration 
was determined using current answers to the question 
“On average, how many hours/night [does your child 
sleep]?” as described in our previous study [6]. Regres-
sion was also used to test for associations between DBP 
scores and having a sleep duration determined to be 
“extremely short” (i.e., ≤ 420  min, or the lower 5th per-
centile of the distribution; n = 144), “non-extreme” 
(i.e., > 420 but < 660  min, or between the 5th and 95th 
percentiles; n = 1900), or “extremely long” (i.e., ≥ 660 min 
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or the upper 95th percentile; n = 244) also described in 
our previous study [6]. All tests were conducted while 
adjusting for age at ascertainment, genetically deter-
mined sex, reported race and intellectual quotient (IQ) 
scores. As we had previously observed that sleep dura-
tion was associated with social/communication impair-
ment and restricted repetitive behaviors (RRB) in this 
dataset [6], we evaluated additional models that included 
social/communication impairment and RRB reported on 
the autism diagnostic interview-revised and measured 
on the autism diagnostic observation schedule. We based 
significance on a p value < 0.05. To determine if age or sex 
modified associations, we performed interaction tests 
including a product term in the model with main effects.

Results
Dysfunctional biological processes influencing ASD 
and Sleep
At the time of these analyses, there were 1014 differ-
ent protein coding ASD candidate genes included in the 
SFARI database. There were 612 ASD candidate genes 
with VEP high consequence variants that were more 
often predicted by in silico algorithms to be damaging 
than benign (Table S2). Every proband had a PDV in a 
currently implicated ASD gene with PDVs in 16 different 
ASD genes, on average (x̅ = 15.76 ± 3.94).

There were 837 SD candidate genes where gene-based 
tests using summary statistics from a published GWAS 
of sleep duration in children were significant at p < 0.05 
[20]. Of these, 505 currently implicated SD genes had 
VEP high consequence variants predicted damaging 
more often than benign in the ASD dataset. All but one 
proband had a PDV in a currently implicated SD gene. 
On average, each individual had a PDV in seven different 

SD genes (x̅ = 7.24 ± 2.70). Across all genes with PDVs in 
the SSC dataset, 29 were separately implicated in both 
ASD (from SFARI gene) and SD in children (from sleep 
duration GWAS) (Table S2).

There were 819 PDV-containing candidate genes 
for ASD and/or SD that encoded proteins with direct 
evidence for interaction (Table S2), and nine biologi-
cal processes overrepresented in these genes (Table  1). 
Significant terms were “GO:0,035,176: social behavior”, 
“GO:2,000,463: positive regulation of excitatory postsyn-
aptic potential”, “GO:0,086,010: membrane depolariza-
tion during action potential”, “GO:0,051,968: positive 
regulation of synaptic transmission”, “GO:0,019,228: neu-
ronal action potential”, “GO:0,021,987: cerebral cortex 
development”, “GO:2,000,310: regulation of NMDA recep-
tor activity”, “GO:0,007,158: neuron cell–cell adhesion”, 
and “GO:0,034,765: regulation of ion membrane trans-
port”. Most PDV-containing genes were assigned to only 
one process (x̅ = 1.24 ± 0.62; Figure S1), indicating these 
were genetically distinct. Results evaluating biological 
processes that were overrepresented for the entire set of 
ASD and SD candidate genes showed that “GO:0,019,228: 
neuronal action potential”, “GO:0,021,987: cerebral cor-
tex development”, “GO:2,000,310: regulation of NMDA 
receptor activity”, and “GO:0,034,765: regulation of ion 
membrane transport” no longer met the FDR-adjusted 
threshold for significant enrichment (Table 1).

The majority of the dataset (n = 2368 or 99.5%) had 
evidence for dysfunction in at least one process (Fig. 1). 
On average, each individual had a DBP score greater 
than zero in three processes (x ̅ = 3.05, sd = 1.41). All 
DBP scores were significantly different from a nor-
mal distribution (p ≤ 8.46 × 10–48, Fig.  2). The pro-
cess with the most evidence of genetic dysfunction in 

Table 1  Processes overrepresented for proteins in ASD/SD protein–protein interaction network

Shown are significant results, based on a false discovery rate (FDR)-corrected threshold, from conditional gene set overrepresentation analyses of ASD and sleep 
duration (SD) candidate genes with predicted damaging variants in the Simons Simplex Collection that encoded proteins with direct evidence for interaction. 
Abbreviations: GO Gene Ontology, Anno Genes annotated in process, Sig PDV-containing gene assigned to process, Exp Number of genes expected to be assigned to 
process by chance, FE Fold enrichment (Sig/Exp). P-values represent the probability that PDV-containing genes would be assigned to the biological process by chance. 
Also included is the FDR-adjusted p-value for analyses run using all ASD and SD candidate genes regardless of evidence for interactions

GO.ID Term Anno Sig Exp FE p-value FDR FDR
All ASD&SD Genes

GO:0,035,176 social behavior 51 16 2.59 5.79 1.94 × 10–8 3.11 × 10–4 6.23 × 10–4

GO:2,000,463 positive regulation of excitatory postsynaptic potential 28 12 1.42 7.75 5.24 × 10–8 4.19 × 10–4 1.64 × 10–3

GO:0,086,010 membrane depolarization during action potential 36 11 1.83 6.01 1.09 × 10–6 5.80 × 10–3 1.15 × 10–2

GO:0,051,968 positive regulation of synaptic transmission 32 10 1.62 6.17 2.50 × 10–6 1.00 × 10–2 1.69 × 10–2

GO:0,019,228 neuronal action potential 34 10 1.73 5.78 4.64 × 10–6 1.37 × 10–2 1.11 × 10–1

GO:0,021,987 cerebral cortex development 117 20 5.94 3.37 5.12 × 10–6 1.37 × 10–2 1.20 × 10–1

GO:2,000,310 regulation of NMDA receptor activity 36 10 1.83 5.46 8.20 × 10–6 1.87 × 10–2 1.00 × 10–0

GO:0,007,158 neuron cell–cell adhesion 17 7 0.86 8.14 1.05 × 10–5 2.11 × 10–2 1.15 × 10–2

GO:0,034,765 regulation of ion membrane transport 473 50 24.01 2.08 1.86 × 10–5 3.31 × 10–2 8.96 × 10–2
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Fig. 1  Evidence of any dysfunction in pleiotropy network biological processes in individuals with ASD. Plotted are the proportion of individuals 
with autism spectrum disorder (ASD) with evidence of dysfunction (DBP > 0) versus no evidence of dysfunction (DBP = 0) in biological processes 
with overrepresentation of ASD and/or sleep duration (SD) genes in the ASD-SD protein–protein interaction network

Fig. 2  Genetic risk scores reflecting the level of dysfunction in pleiotropy network biological processes in individuals with ASD. Shown are the 
distributions of raw scores, across individuals with autism spectrum disorder (ASD), for each process with significantly more PDV-containing genes 
encoding proteins in the ASD-sleep duration protein–protein interaction network. No scores were normally distributed (p ≤ 8.46 × 10–48)
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the ASD dataset was “cerebral cortex development” 
(Figs.  1 and 2). Scores reflecting dysfunction in this 
process were correlated with other DBP scores for 
membrane depolarization during action potential 
(ρ = 0.19, p = 1.0 × 10–9), positive regulation of synap-
tic transmission (ρ = 0.04, p = 3.01 × 10–2), neuronal 
action potential (ρ = 0.21, p = 1.0 × 10–9), regulation 
of NMDA receptor activity (ρ = 0.28, p = 1.0 × 10–9), 
and regulation of ion membrane transport (ρ = 0.17, 
p = 4.44 × 10–16; Figure S2). There were 108 genes with 
PDVs in the ASD/SD pleiotropy network predicted to 
influence “cerebral cortex development” in humans 
based on evidence from Gene Ontology (Fig. 3).

Comparisons with randomly selected, feature‑matched 
gene sets
There were fewer random genes with PDVs (n = 605 
random versus 612 ASD) when comparing the gene set 
matched for features in the ASD candidate gene set and 
similarly for random genes matched to the SD candidate 
gene set (n = 472 random versus n = 505 SD). On aver-
age, individuals had more ASD (t = 22.88 [df = 3317], 
p < 2.2 × 10–16) and fewer SD (t =  − 5.26 [df = 4649], 
p = 1.49 × 10–7) candidate genes with PDVs compared 
to random genes with PDVs (Table S3). A PPI network 
was predicted between random genes feature-matched to 
ASD gene and random genes feature-match to SD genes; 
however, there were no biological processes overrepre-
sented for random genes with PDVs encoding proteins 
in this predicted PPI network that met the FDR-adjusted 

Fig. 3  Network of proteins encoded by autism spectrum disorder (ASD) and sleep duration (SD) genes implicated in cerebral cortex development. 
Shown is the protein–protein interaction network predicted for the products of genes with predicted damaging variants identified in individuals 
with ASD that are assigned to the Gene Ontology biological process of “GO:0,021,987: cerebral cortex development”. Proteins are colored according 
to the associated condition as follows: blue = ASD-related protein, yellow = SD-related protein, green = both ASD, and SD-related protein
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significance threshold (Table S3). Since no biological pro-
cesses overrepresented for the PPI network of random 
genes were identified, no subsequent scores were cal-
culated, and the remaining steps in the analysis pipeline 
could not be completed.

DBP scores for cerebral cortex development associate 
with sleep duration
Increased evidence for dysfunction in the Gene Ontol-
ogy-defined process of “cerebral cortex develop-
ment” was associated with a small effect (β = 0.000016 
[0.0000006], p = 4.87 × 10–3) on longer parent-reported 
sleep duration (Fig.  4; Table S4a). In particular, genetic 
scores reflecting evidence for dysfunction in this bio-
logical process had the strongest effects on having a 
sleep duration that was extremely long, or ≥ 11 h, based 
on the overall distribution of sleep durations reported 
in this dataset (β = 0.0063 [0.0019], p = 1.2 × 10–3; Table 
S4b). These effects remained significant when adjust-
ing for ASD core symptom severity in regression mod-
els (Table  S4a-b). Interaction tests indicated that age 
had a near significant effect on the association between 
DBP scores for “cerebral cortex development” and hav-
ing a sleep duration that was extremely long (β = 0.0001 
[0.00005], p = 8.43 × 10–2; Table S4c). The largest effect 

of DBP scores on sleep duration was observed in indi-
viduals who were teenagers of secondary-school age (13–
18 years old) when compared to either young preschool 
age (4–5  years old) or primary school-age (6–12  years 
old) children (β = 0.00005 [0.00002], p = 4.65 × 10–3; 
Table 2, Table S4d).

Discussion
Our approach to analysis of WES data incorporated 
evidence from typical forms of variation (i.e., de novo, 
inherited, rare, common, SNVs, indels, and CNVs) into 
cumulative risk scores reflecting the likelihood for dys-
function in entire systems evidenced to have pleiotropic 
effects on expression of ASD and sleep duration. Calcu-
lating these scores may have helped detect the mecha-
nisms associated with variable expressivity of sleep 
duration in individuals with ASD. This has implications 
for future work aimed at identifying more effective 
approaches for treating sleep problems in these patients. 
In general, polygenic risk scores have been shown to be 
useful to exploring whether genetic susceptibility under-
lies variable expressivity of symptoms [48] and may hold 
promise for informing precision medicine by offering the 
opportunity to predict risk and aid in early detection and 
intervention for many complex conditions [49]. Sleep 

Fig. 4  Association between dysfunctional cerebral cortex development scores and sleep duration. Plotted is the linear prediction for the 
relationship between dysfunctional biological process (DBP) scores for cerebral cortex development (GO:0,021,987) and reported sleep duration in 
minutes. 95% confidence intervals around fitted lines are indicated in gray; Beta coefficients (β) and the corresponding p value are provided
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disruption is a complex condition that may be a modifia-
ble risk factor for increased symptom severity in individ-
uals with ASD [8]. It is possible that estimating genetic 
risk contributing to expression of sleep problems could 
help identify those individuals with ASD who would ben-
efit from more comprehensive sleep evaluations.

Dysfunction in cerebral cortex development is associated 
with sleep duration in ASD
We observed that the accumulation of predicted dam-
aging variants in genes encoding proteins that comprise 
a network connecting ASD and sleep biology point to 
cerebral cortex development. In general, this biologi-
cal process appeared to be genetically distinct from 
other overrepresented processes. The majority of genes 
assigned to cerebral cortex development (n = 101/117) 
based on evidence included in Gene Ontology were 
not assigned to other processes. DBP scores calculated 
in the ASD dataset for cerebral cortex development 
were however moderately correlated with DBP scores 
reflecting increased dysfunction in generation of a neu-
ronal action potential (GO:0,019,228) and regulation of 
N-methyl-d-aspartate selective glutamate receptor activ-
ity (GO: 2,000,310). DBP scores for these two other pro-
cesses were strongly correlated with each other (ρ = 0.55, 
p = 1.00 × 10–9), but did not have any genes that were 
assigned to them both (Figure S1). Notably, glutamate 
serves as the major excitatory neurotransmitter in the 

brain and glutamate abnormalities have been observed 
in many individuals with ASD [50]. In addition, cortical 
excitatory neurotransmissions are wake-promoting [51]. 
It is possible that dysfunction in cerebral cortex develop-
ment impacts these wake-promoting signals and results 
in longer periods of sleep. It is evidenced that the cere-
bral cortex regulates sleep through the homeostatic pro-
cess. Cortical oscillations are observed to coordinate with 
sleep homeostasis which influences both the duration 
and intensity of sleep [52]. Namely, sleep homeostasis 
refers to the build-up in sleep pressure that accumulates 
during periods of wakefulness. Following prolonged peri-
ods of sleep deprivation, the majority of subsequent sleep 
during the recovery period is spent in slow-wave sleep 
which is the deepest phase of non-rapid eye movement 
(NREM) sleep. Conversely, prolonged periods of sleep are 
usually followed by a reduction in sleep propensity [53]. 
Studies in mice observed that cortical structures actively 
contribute to sleep homeostasis and the global control 
of vigilance states [54]. In addition, a subset of GABAe-
rgic cortical interneurons that produce nitric oxide syn-
thase are sleep promoting and primarily active during 
NREM sleep [51]. Mice lacking neuronal nitric oxide syn-
thase have less NREM sleep and a blunted homeostatic 
response to sleep deprivation [55]. Objective measures 
of human sleep following periods of deprivation have 
shown that the build-up of homeostatic sleep pressure 
is slower in mature typically developing adolescents 

Table 2  Associations between genetic evidence of dysfunction in cerebral cortex development and sleep duration in different age 
groups

Shown are results from tests for a relationship between dysfunctional biological process (DBP) scores for cerebral cortex development (GO:0,021,987) and parent-
reports of sleep durations in n = 2,288 individuals diagnosed with ASD. Tests were conducted within different age groups based on school age. Models adjusted for 
intellectual quotients, reported age at ascertainment, genetically-determined sex and reported race. Provided are ranges for quantitative measures, or the number 
of individuals in each category for categorical variables. †For each one unit increase in the DBP score, the β-coefficient reflects the amount each measure either 
decreases or increases. P-values represent the probability that there is no effect

Phenotype Variable β† SE t-statistic p-value

Preschool Age Children (n = 396)
  Sleep Duration (240–780 min) 2.32 × 10–5 1.15 × 10–5 2.01 4.47 × 10–2

  Full Scale IQ (range = 19–150) -1.13 × 10–5 3.36 × 10–5 -0.34 7.36 × 10–1

  Age (range = 4–5 years) -1.15 × 10–4 1.61 × 10–4 -0.71 4.76 × 10–1

  Male Sex (n = 339) -4.34 × 10–4 2.47 × 10–3 -0.18 8.60 × 10–1

Primary School-Age Children (n = 1,467)
  Sleep Duration (240–720 min) 1.88 × 10–6 6.71 × 10–6 0.28 7.79 × 10–1

  Full Scale IQ (range = 10–165) 6.46 × 10–6 1.70 × 10–5 0.38 7.04 × 10–1

  Age (range = 6–12 years) -4.02 × 10–5 2.02 × 10–5 -1.99 4.72 × 10–2

  Male Sex (n = 1,273) -5.30 × 10–4 1.34 × 10–3 -0.40 6.93 × 10–1

Secondary School-Age Teenagers (n = 425)
  Sleep Duration (210–720 min) 4.71 × 10–5 1.66 × 10–5 2.85 4.65 × 10–3

  Full Scale IQ (range = 7–161) -5.13 × 10–5 3.47 × 10–5 -1.48 1.39 × 10–1

  Age (range = 13–18 years old) 1.28 × 10–4 5.83 × 10–5 2.19 2.90 × 10–2

  Male Sex (n = 362) -5.59 × 10–3 3.01 × 10–3 -1.86 6.40 × 10–2
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compared with prepubertal or early pubertal children 
[56]. This indicates that the delay in sleep phase which 
is well-described in typically developing mature adoles-
cents relates to the homeostatic regulation of sleep [56]. 
As such, it is possible that the homeostatic regulation of 
sleep in some individuals with ASD may be disturbed and 
that this potentially relates to predicted genetic dysfunc-
tion in cerebral cortex development.

Genetic effects on sleep are stronger in adolescents 
with ASD
Notably, the most significant relationship between 
genetic dysfunction in cerebral cortex development 
and long sleep durations were observed in teenagers 
with ASD (ages 13–18  years old). Previous findings in 
ASD indicating shorter parent-reported sleep durations 
related to more severe core symptoms and expression 
of other co-occurring conditions (e.g., attention deficit, 
depression, obsessive compulsive disorder) were primar-
ily driven by children who were ages 4–12 years old [6]. 
It is possible that we did not detect a strong relation-
ship between having more genetic dysfunction and sleep 
duration in younger children because there are other 
non-genetic risk factors (e.g., behavioral, environmen-
tal) influencing sleep in these children. Considering the 
majority of the ASD dataset evaluated in this study were 
children within this age range (n = 1863, 81%), it is likely 
there is more heterogeneity complicating detection of 
shared genetic risk factors influencing expression of sleep 
duration variability. It is also possible that variation in 
genes influencing sleep duration in typically developing 
children are distinct from those influencing sleep dura-
tions in children with ASD.

It is also important to consider that defining sleep-
related traits, particularly insomnia, is difficult where 
sleep-related data are being derived from potentially 
biased parent report. By evaluating the parent-reported 
sleep trait that we previously observed to be the most 
accurate insomnia-related trait that could be obtained 
from parent report [19], it is assumed that potential 
biases related to these third party subjective reports of 
sleep are minimized. This does not account for the pos-
sibility that adolescents with longer reported sleep dura-
tions also have issues related to sleep-onset delay or 
wake-after sleep onset which could impact sleep duration 
and be missed by parents and caregivers [19]. To date, 
very few studies have focused on understanding sleep 
behaviors in adolescents and adults with ASD making it 
difficult to draw solid conclusions regarding the results 
of our study. There is a profound need for more studies 
evaluating objective sleep data in large ASD datasets. 
However, the few studies that have evaluated objective-
measures of sleep in adolescents and adults with ASD 

found that—while total sleep times were not different—
older individuals with ASD spent more time in bed, had 
longer sleep onset latency, spent more time awake after 
sleep onset and had reduced sleep efficiency when com-
pared to typically developing peers [57, 58]. This could 
explain the somewhat surprising observation that, pri-
marily in adolescents with ASD, increased evidence of 
genetic dysfunction in cerebral cortex development was 
associated with longer parent-reported sleep durations 
when the expectation was that genetic dysfunction in 
sleep duration-related mechanisms would instead result 
in shorter sleep. As such, an extremely long parent-
reported “sleep duration” could be a proxy for longer 
sleep onset latency and reduced sleep efficiency. Focus-
ing on obtaining objective measures of insomnia-related 
traits and understanding the causes and consequences 
of sleep disturbances in large datasets of adolescents and 
adults with ASD is an important area of future work.

Furthermore, similar to the sleep durations reported in 
the ASD dataset, the childhood sleep duration candidate 
genes selected in this study were derived from results of 
a GWAS evaluating parent-reports of how many hours 
their child sleeps during the day including naps [20]. 
Therefore, these GWAS results may also be influenced 
by potentially unreliable third-party reporting of sleep 
traits. It is also possible that the childhood sleep duration 
candidate genes identified using gene-based tests are not 
the effector genes being tagged by GWAS hits [59]. While 
we focused on sleep duration genes because sleep dura-
tion was considered the most reliable phenotypic trait 
we could evaluate with subjective reports, it is important 
to confirm implicated genes using objective measures of 
sleep and model systems and to experimentally deter-
mine the direction of associated genetic effects. It may 
also be necessary to evaluate effects of predicted damag-
ing variants in genes that influence the timing of sleep as 
opposed to the duration.

Another possibility is that these results reflect evidence 
of other co-occurring conditions that are important to 
treat. For example, previous studies of common genetic 
variants in typically developing adults detected a corre-
lation between increased schizophrenia risk and longer 
sleep durations [60]. Schizophrenia often co-occurs with 
autism [61], and there may be shared molecular under-
pinnings contributing to sleep problems across these 
two neurodevelopmental conditions. In typically devel-
oping adults, both short and long sleep have also been 
observed to relate to increased risk for other mental 
health issues, like depression [62]. However, studies in 
typically developing adolescents have not observed these 
same relationships between long sleep and mental health 
problems [63]. Ultimately, objective measurements and 
accurate phenotyping are key to detecting true effects in 
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computational analyses and should be a focus of future 
studies.

Limitations
While limitations have been noted throughout, addi-
tional issues include the lack of independent validation 
of variants identified via WES to confirm that these were 
accurately called. This may be especially important for 
indels which have been observed to require additional 
QC to more accurately identify these via WES technolo-
gies [64]. The observation that a similar number of PDVs 
were identified in random gene sets compared to can-
didate genes SD suggests the possible presence of false 
positive variant calls in this WES dataset. However, the 
calculation of cumulative risk and the systems-based 
approach used in the current study should help account 
for potential false positive variant calls as it is assumed 
unlikely for many of these to congregate in the same 
molecular mechanism. Notably, although a PPI network 
was predicted we did not identify any biological pro-
cesses that were overrepresented for randomly selected 
genes with PDVs in this “random” PPI network. This 
indicates that taking a systems-based approach may help 
account for potential false positive variant calls that are 
often reported in WES data.

Ultimately, the determination that a genetic variant 
was likely to damage to a protein product was based on 
in silico predictions and will require additional follow-up 
studies to confirm any effect on the protein function. It 
is unclear what the optimal approach is for in silico pre-
diction of the likelihood a genetic variant is damaging to 
the encoded protein product [65–67]. As demonstrated 
in Supplemental Table 2, predictions from available tools 
vary widely when applied to the same variant as they 
employ different algorithms and use different training 
data to determine the accuracy of predictions [68]. As 
such, it is highly advisable to combine predictions from 
multiple tools to assess the overall likelihood a vari-
ant is damaging [69]. Approximately half of the variants 
(50.12%) that were predicted to have a negative conse-
quence on the encoded protein based on genetic location 
(i.e., the VEP prediction) were not given predictions by 
any other algorithm. This is likely because the variant has 
not yet been observed in the populations that are used 
for training prediction algorithms. As such, it is difficult 
to determine the likelihood that an extremely rare vari-
ant is damaging without conducting functional follow-
up studies. We also observed that ~ 19% of the SNVs and 
indels that were in a genetic region that was likely to be 
damaging were more often predicted to be benign by 
algorithms that incorporated information in addition to 
location (e.g., the frequency of the variant in populations 
with no evidence of disease, the level of conservation of 

the genetic region across species). Fortunately, as the field 
of in silico variant prediction continues to develop novel 
methods, focused on advances like mapping variants to 
three-dimensional protein structures [70], predictions 
should become more accurate and variant prioritization 
more efficient. Additional variant validation and func-
tional evaluation are outside of the scope of these studies 
and are an important area for future work.

Another limitation relates to the possibility that pre-
dicted protein–protein interactions provided in the 
STRINGdb that we used to determine the pleiotropy 
network are not accurate. While we only selected interac-
tions predicted at medium confidence or better, it may be 
necessary to select more stringent criteria for these pre-
dictions in the future. Furthermore, the GO-defined bio-
logical processes are not innately independent, and genes 
are assigned to multiple processes. As such, to calculate 
our scores for dysfunction in overall processes, genes 
were weighted to account for the level of evidence sup-
porting assignment of the gene to the biological process 
of interest using GO evidence codes (http://​www.​geneo​
ntolo​gy.​org/​page/​guide-​go-​evide​nce-​codes). This could 
introduce bias as it is unclear what should be considered 
the most reliable sources of evidence supporting assign-
ment of genes to GO terms. While experimental evi-
dence would be preferred, it is potentially skewed, as this 
code will likely be assigned more often to genes that were 
directly evaluated for a role in the process of interest. The 
majority of genes are assigned to terms based on com-
putational predictions which are considered reliable in 
the absence of experimental data [71]. As assignments of 
genes to processes are updated regularly, we have noted 
versions and updates of the GO used in these analyses.

Finally, while the primary goal was to determine if 
current evidence could be translated into clinically use-
ful information, it is possible that by focusing on already 
implicated genes we did not consider all evidence for 
process dysfunction. Future work aimed at understand-
ing genetic contributions to overall process dysfunction, 
regardless of the underlying evidence of risk for ASD 
may help detect more robust differences in ASD-related 
symptoms.

Conclusions
Our approach identified subsets of candidate genes 
with common underlying biology that are dysfunctional 
in individuals with ASD and related to expression of a 
co-occurring symptoms, sleep disturbance. This work 
constitutes a translational bioinformatics approach 
beneficial to gleaning clinically useful information from 
WES. Given sequencing data and an initial list of candi-
date genes, our DBP scores can be readily calculated for 

http://www.geneontology.org/page/guide-go-evidence-codes
http://www.geneontology.org/page/guide-go-evidence-codes
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any individual and relevant biological process of inter-
est to identify clinically relevant genetic factors for a 
number of neurodevelopmental conditions.
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Additional file 1: Figure S1. Overlap in assignment of ASD/SD candidate 
genes with predicted damaging variants to overrepresented biological 
processes. Shown is the overlap among assignment of autism spec‑
trum disorder (ASD) and/or sleep duration (SD) candidate genes with a 
predicted damaging variant in the SSC dataset to biological process with 
significant overrepresentation of genes in the pleiotropy network. The 
y-axis indicates the number of genes either uniquely assigned to each 
process, or to multiple processes, as denoted by the filled circles for pro‑
cesses along the x-axis. Set size indicates the number of genes assigned 
to any given process. Social behavior (GO:0035176), positive regulation of 
excitatory postsynaptic potential (GO:2000463), membrane depolariza‑
tion during action potential (GO:0086010), positive regulation of synaptic 
transmission (GO:0051968), neuronal action potential (GO:0019228), 
cerebral cortex development (GO:0021987), regulation of NMDA receptor 
activity (GO:2000310), neuron cell-cell adhesion (GO:0007158) and regula‑
tion of ion membrane transport (GO:0034765).

Additional file 2: Figure S2. Correlation structure among dysfunctional 
biological process (DBP) scores. Shown are significant (p<0.05) Spearman’s 
rank correlations across DBP scores that were calculated for overrepre‑
sented processes for predicted damaging genetic variants identified in 
the dataset of individuals with autism spectrum disorder (ASD). Darker 
red indicates a stronger relationship and lighter gray indicates a weaker 
relationship. 
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