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Abstract 

Epigenetics, one mechanism by which gene expression can change without any changes to the DNA sequence, was 
described nearly a century ago. However, the importance of epigenetic processes to neurodevelopment and higher 
order neurological functions like cognition and behavior is only now being realized. A group of disorders known as 
the Mendelian disorders of the epigenetic machinery are caused by the altered function of epigenetic machinery 
proteins, which consequently affects downstream expression of many genes. These disorders almost universally have 
cognitive dysfunction and behavioral issues as core features. Here, we review what is known about the neurodevelop‑
mental phenotypes of some key examples of these disorders divided into categories based on the underlying func‑
tion of the affected protein. Understanding these Mendelian disorders of the epigenetic machinery can illuminate the 
role of epigenetic regulation in typical brain function and can lead to future therapies and better management for a 
host of neurodevelopmental and neuropsychological disorders.
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Background
In 1942, Conrad Waddington coined the term “epigenet-
ics” to describe biological events that occur in response 
to external factors, therefore providing a relationship 
between genotype and phenotype [1]. Today, it is known 
that epigenetic changes are heritable modifications that 
alter gene expression patterns without changing the 
DNA sequence. This is done through DNA methylation, 

histone modifications, chromatin remodeling, and RNA-
based mechanisms [2]. Together, these mechanisms are 
crucial for a wide range of processes, including early 
development, X-inactivation, imprinting, and tissue-
specific gene regulation, which, if disturbed, can lead to 
detrimental consequences. Here, we will focus on the 
role epigenetics plays in neurodevelopment, specifically 
utilizing Mendelian disorders of the epigenetic machin-
ery (MDEMs) as examples to explain the underpinnings 
of the consequences of dysregulation.

Epigenetics in neurodevelopment
When examining the genes that have been found to be 
causative of neurodevelopmental disabilities (NDDs), 
several patterns emerge. Many of the genes share com-
mon pathways including neurogenesis—develop-
mental and adult, proliferation and differentiation of 
neural progenitors, neural migration, axonal guidance, 
disrupted synaptogenesis, impaired synaptic function, 
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and imbalance of excitatory and inhibitory signaling [3, 
4]. Epigenetic regulation and chromatin modification 
play a crucial role in all aspects of these processes.

The most common type of DNA methylation occurs 
at the fifth position of cytosine at CpG dinucleotides 
and is traditionally associated with repression of gene 
expression at promoters, although several studies have 
suggested it can also be involved in upregulation of 
expression [5]. The regulation of this process is vital for 
neurodevelopment as suggested by the fact that certain 
brain regions and cell types have specific methylation 
signatures and that these methylation profiles start in 
flux and become fixed over the course of development 
[6, 7]. Additionally, non-CpG methylation is specifically 
enriched in brain tissues and accumulates throughout 
development into adulthood and has been shown to be 
crucial for both neurogenesis and maturation of neu-
ral progenitor cells [8]. DNA methylation is also the 
mechanism by which genes are imprinted. Imprinting 
is the process by which only one allele of certain auto-
somal genes is expressed in the body or in a certain tis-
sue depending on the allele’s parent of origin. Imprinting 
disorders occur when the expression of imprinted genes 
are disrupted by a sequence change including deletion or 
duplication or epigenetic regulation. While imprinting 
disorders are outside the scope of this review, the existing 
literature on NDDs with disrupted genomic imprinting—
like Prader-Willi syndrome and Angelman syndrome—
highlight the vital role of imprinting on the regulation of 
gene expression, and subsequent, downstream effects on 
cognitive and behavioral functioning [9–11].

In addition to DNA methylation, 3D chromatin struc-
ture and the dynamic process of chromatin remodeling 
is a crucial piece underlying the transition of cells from 
neural progenitor cells (NPCs) to their terminally dif-
ferentiated cell types. Along this differentiation process, 
certain regions of chromatin become increasingly more 
compressed causing certain genes—presumably those 
involved in dictating NPC fate—to become permanently 
repressed [12, 13]. Specific chromatin remodeler pro-
teins have been shown to be essential for proper brain 
development and neuronal differentiation. For exam-
ple, heterozygous knockout of the chromatin remodeler 
Chd2 in mice leads to a distinct deficiency in production 
of GABAergic neurons specifically, significantly alter-
ing the cellular makeup of the cortex [14]. Knockout of 
Ctcf in mice, one of the main proteins responsible for 3D 
chromatin organization, led to increased apoptosis and 
disorganization of the forebrain and telencephalon [15]. 
Importantly, in humans, heterozygous loss of function of 
CTCF and CHD2 are both associated with neurodevel-
opmental disorders resulting in intellectual disability, sei-
zures, and behavioral issues [16].

Histone modifications also play an essential role in 
the development and functioning of the nervous sys-
tem. The idea of histone modifications leading to either 
“open” or “closed” chromatin has long been established 
[17]. “Open” chromatin, or euchromatin, allows for tran-
scription, resulting in gene expression, whereas “closed” 
chromatin, or heterochromatin, is more compact, mak-
ing it difficult for factors to bind, resulting in silenced 
gene expression. As such, disruption of methylation or 
demethylation and/or acetylation or deacetylation at a 
variety of spots leads to abnormalities in neurodevelop-
ment. For example, deletion of Dpy30—a common pro-
tein subunit among many histone methyltransferases—in 
mouse brains leads to both neurogenic and gliogenic 
deficits [18]. The polycomb repressive complex (PRC), 
one of the best studied mechanisms of gene expression 
regulation, contains both histone methyltransferase and 
histone demethylase components. Ezh2, a histone meth-
yltransferase component of PRC2, has been shown to 
stimulate neurogenesis and stimulate proper differentia-
tion of NPCs into neurons and glia [19, 20]. Maintaining 
the appropriate balance of the state of histone acetyla-
tion also seems to be particularly important for differen-
tiation of NPCs into terminal cell types. Several studies 
have shown that an orchestrated and tightly regulated 
decrease and then increase of H3K9 acetylation is neces-
sary for early neural differentiation, and if this process is 
disrupted, differentiation is either inhibited altogether or 
mistimed [21, 22].

While we continue to learn more about the role of epi-
genetics in neurodevelopment, some of the best evidence 
available comes from examining the resulting cognitive 
and behavioral phenotype when one specific component 
of the epigenetic machinery is disrupted. These disorders 
are collectively referred to as Mendelian disorders of the 
epigenetic machinery [23].

Mendelian disorders of the epigenetic machinery (MDEMs)
The majority of MDEMs are caused by heterozygous loss 
of function variants in components of the machinery that 
perform the writing, erasing, reading, and remodeling 
of epigenetic marks [23]. Writers place the appropriate 
chemical groups, with the most widely studied altera-
tions being methylation and acetylation. Methylation, 
or the addition of methyl group(s), can occur on both 
DNA, catalyzed by DNA methyltransferases (DNMTs) 
and typically associated with silencing of gene expres-
sion, and on histone proteins, catalyzed by histone meth-
yltransferases (i.e., protein arginine methyltransferases 
(PRMTs) and histone lysine methyltransferases (KMTs)) 
which can result in open or closed chromatin. Acetyla-
tion, which occurs only on histones, is the addition of 
acetyl groups by histone acetyltransferases (HATs) and is 
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typically associated with transcriptional activation [24]. 
Erasers, on the other hand, remove these modifications 
added to DNA or histones. Erasers include ten eleven 
translocation (TET) enzymes, which oxidize 5-methyl-
cytosine to 5-hydroxymethylcytosine resulting in subse-
quent DNA demethylation, histone demethylases, which 
remove methyl groups from lysine residues in histones, 
and histone deacetylases (HDACs), which are enzymes 
that remove the acetyl group from histones [25].

These modifications then need to be recognized and 
complexes recruited, which is done by readers. Readers 
contain specialized docking domains which bind to spe-
cific covalent modifications placed by writers. For example, 
methyl CpG binding proteins (MBPs) bind to methylated 
DNA and recruit chromatin remodeling complexes to 
repress transcription [24]. The fourth type of epigenetic 
proteins are the remodelers. There are four structural 
families of chromatin remodelers including switch/sucrose 
non-fermenting (SWI/SNF), imitation switch (ISWI), ino-
sitol requiring 80-like  (IN080), and chromodomain heli-
case DNA binding (CHD) [26]. These remodelers utilize 
adenosine triphosphate (ATP) to alter chromatin struc-
tures to either activate or repress gene expression.

It has become increasingly evident that variants caus-
ing alterations in the normal biallelic state of genes that 
encode proteins with direct roles in epigenetic regulation 
(www. epige netic machi nery. org) often lead to disease. 
Many of these proteins that do cause disease when there 
is loss of function have dual epigenetic functions; for 
example, both an enzymatic and a reader domain [27]. 
Additionally, it has also been found that these genes that 
control epigenetic regulation have significantly higher 
probability of being loss of function intolerant (pLI) 
scores when compared to all other genes, indicating that 
these epigenetic machinery genes are highly intolerant 
to loss of function variation, with chromatin remodel-
ers being the most highly intolerant group [27, 28]. This 
dosage sensitivity is an unusual feature of these genes, as 
about 80% of all Mendelian diseases caused by enzyme 
deficiency display recessive inheritance, whereas 86% of 
MDEMs display dominant inheritance [29, 30]. Interest-
ingly, the vast majority of these MDEMs are associated 
with neurological dysfunction and more specifically, 
NDDs (Table 1) [23, 31]. This, along with the known role 
of epigenetics in neurodevelopment and ongoing neural 
circuitry functioning outlined above, underscores the 
importance of these mechanisms to the development 
of cognitive and behavioral phenotypes in humans in 
both health and disease. Several of the disease-causing 
histone modifiers have overlapping molecular mecha-
nisms (e.g., writers at the same lysine residue, regulation 
of transcription of the same genes, etc.) [32]. Addition-
ally, many of these proteins work together in complexes 

or are codependent [5]. If it is determined from deep 
phenotyping that MDEMs resulting from proteins with 
overlapping functions or codependent functions have 
similar cognitive or neurobehavioral endophenotypes, 
it gives us invaluable information about how these pro-
teins and their epigenetic mechanisms function in both 
the developing and adult brains, not only in pathologic 
states but in health as well. Here, we will outline what 
is known about the cognitive and behavioral profiles of 
certain MDEMs divided into broad mechanistic catego-
ries to begin to examine these associations. Although 
literature involving cognitive and behavioral phenotypes 
of MDEMs are generally limited, the following MDEMs 
represent those with a relatively larger body of research 
or clinical case reviews that are also molecularly and/or 
phenotypically representative of the group.

DNA methylation—Tatton‑Brown‑Rahman syndrome
Tatton-Brown-syndrome (TBRS) is an overgrowth dis-
order caused by loss of function variants in DNMT3A 
which is involved in encoding an epigenetic regulator 
that mediates DNA methylation [33]. TBRS is character-
ized by intellectual impairment with the majority in the 
moderate range (IQ 39 to 76) [34, 35]. Recent literature 
suggests that those with TBRS may present with stronger 
verbal reasoning skills than non-verbal or spatial process-
ing skills [35]. TBRS is associated with a high incidence 
of autism spectrum disorder (36–44%) [34, 35], and neu-
ropsychiatric concerns, which includes psychotic disor-
ders or schizophrenia largely varying from 5 to 42% of 
published clinical samples [34, 36]. Aggressive behaviors, 
stereotypic behaviors, obsessive compulsive behaviors, 
anxiety, features of attention-deficit/hyperactivity disor-
der, and neurodevelopmental regression have also been 
observed, although these may be associated with the 
broader clinical presentation of autism spectrum disor-
der or psychosis [34, 37]. Consistent with human subject 
research, mouse models with a heterozygous mutation in 
Dnmt3a similarly present with increased anxiety-related 
behaviors including reduced exploration and increased 
freezing response, as well as abnormal social behaviors 
(e.g., reduced exploration and communication with other 
mice) and reduced social drive, albeit, cognition was less 
affected [38].

DNA demethylation—Beck‑Fahrner syndrome
Beck-Fahrner syndrome (BEFAHRS) is the first identi-
fied Mendelian disorder of DNA demethylation caused 
by TET3 deficiency [39]. Given the recent discovery of 
this syndrome, literature on the associated cognitive and 
behavioral phenotype is extremely limited. Of 11 cases of 
those with BEFAHRS or TET3 deficiency, all had global 
developmental delay or intellectual disability, most with 

http://www.epigeneticmachinery.org
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Table 1 MDEM genes associated with neurodevelopmental disabilities and reported neurobehavioral phenotypes 

Gene Primary mechanism Function Dual function? ID/DD ADHD Anxiety Hypotonia Other behavior 
problems

ALG13 Reader HMR X X Stereotypies, limited 
reports of SIB

ASH1L Writer HMT/HMR and HAR X X X X X ASD, SIB

ASXL1 Reader HMR X X

ASXL2 Reader HMR X X X ASD

ASXL3 Reader HMR X X Stereotypies, autistic 
features, aggression

ATRX Remodeler RE/HMR X X X X

BPTF Reader HMR and HAR X X X

BRPF1 Reader HMR and HAR X X X

BRWD3 Reader HMR and HAR X X Aggression, autistic 
features

CHD1 Remodeler RE/HMR X X X Autistic features

CHD2 Remodeler RE/HMR X X X

CHD3 Remodeler RE/HMR X X X Stereotypies

CHD4 Remodeler RE/HMR X X

CHD5 Remodeler RE/HMR X X X X Aggression, disruption

CHD7 Remodeler RE/HMR X X X ASD, aggression, SIB, OCD

CHD8 Remodeler RE/HMR X X X X X ASD, aggression, SIB

CREBBP Writer HAT/HAR X X X X X Repetitive behavior, 
aggression, SIB, OCD

DNMT3A Writer DNMT/HMR X X X X X ASD

DPF2 Reader HAR X X Behavioral prob NOS

EED Reader HMR X X

EHMT1 Writer HMT/HMR X X X X ASD, aggression

EP300 Writer HAT/HAR X X X X X Repetitive behavior, 
aggression, SIB, OCD

EZH2 Writer HMT X X X ASD

HDAC4 Eraser HDAC X X

HDAC6 Eraser HDAC X

HDAC8 Eraser HDAC X X ASD, aggression, SIB

KAT5 Writer HAT X X Stereotypies

KAT6A Writer HAT/HAR X X X

KAT6B Writer HAT/HAR X X X

KAT8 Writer HAT X X X ASD

KDM1A Eraser HDM X X

KDM3B Eraser HDM X X X ASD

KDM4B Eraser HDM/HMR X X X X OCD

KDM5B Eraser HDM/HMR X X X X

KDM5C Eraser HDM/HMR X X X X X Aggression, repetitive 
behaviors, stereotypies

KDM6A Eraser HDM X X X X

KDM6B Eraser HDM X X X ASD

KMT2A Writer HMT/HMR and HAR 
and DNUMR

X X X X X Repetitive behaviors, 
OCD, aggression

KMT2B Writer HMT/HMR and DNUMR X X X X ASD, stereotypies

KMT2C Writer HMT/HMR X X X X ASD, aggression

KMT2D Writer HMT/HMR X X X X X OCD, stereotypies

KMT2E Writer HMT/HMR X X X X X ASD, aggression, SIB, 
Stereotypies

KMT5B Writer HMT X X X ASD
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hypotonia or hypermobility (9/11) and a little over half 
presented with autistic features (6/11) [39]. At present, 
the majority of the literature on TET3 deficiency has 
largely been conducted using animal models. Tet3 defi-
ciency, deletion, or ablation in neurons have been linked 
to increased anxiety behaviors [40–42] and fear gen-
eralization in mice [42], in addition to impaired spatial 
orientation [41] and short-term memory [40], implicat-
ing its role in the neurogenesis of the hippocampus and 
prefrontal cortex. Moreover, expression of genes involved 
in memory formation are regulated by Tet3 levels [43]. 
Taken together, these findings may indicate hippocam-
pal functions including spatial processing and semantic 

memory formation may be particularly affected among 
those with BEFAHRS, although this remains to be seen 
in human subject research. Anxiety and autistic traits, 
which may be bidirectionally related, may be more com-
mon features of the syndrome.

Chromatin remodeling—CHARGE syndrome
The majority of those diagnosed with CHARGE syn-
drome have heterozygous mutations in CHD7 [44]. 
CHARGE syndrome is characterized by growth retarda-
tion in addition to multiple organ anomalies that includes 
the heart, choanae, genital/urinary systems, ear, and ocu-
lar coloboma, and, less commonly, vertebral/limb, renal, 

Table 1 (continued)

Gene Primary mechanism Function Dual function? ID/DD ADHD Anxiety Hypotonia Other behavior 
problems

MBD5 Reader HMR and DNMR X X X X ASD, Aggression, SIB, 
Stereotypies

MECP2 Reader DNMR X X X ASD, aggression, SIB, 
repetitive behavior, 
stereotypies

MORC2 Reader HMR X X

MSL3 Reader HMR X X ASD

NSD1 Writer HMT/HMR X X X X X ASD, aggression, repeti‑
tive behavior, OCD

PHF21A Reader HMR X X X X ASD, SIB

PHF6 Reader HMR X X

PHF8 Eraser HDM/HMR X X ASD

PHIP Reader HMR and HAR X X X X ASD, aggression, stereo‑
typies

PRDM13 Writer HMT X

PRDM8 Writer HMT X

RAI1 Reader HMR X X X X Aggression, OCD

RERE Reader HMR X X ASD, behavior problems 
NOS

SETD1A Writer HMT X X X X Aggression, OCD

SETD1B Writer HMT X X ASD

SETD2 Writer HMT X X X X ASD, aggression, OCD

SETD5 Writer HMT X X X ASD, stereotypies, OCD

SMARCA2 Remodeler RE/HAR X X

SMARCA4 Remodeler RE/HAR X X X X Repetitive behaviors, 
stereotypies

SRCAP Remodeler RE X X X X ASD, aggression, mood 
disorders

TCF20 Reader HMR X X X X ASD, mood disorders

TET3 Eraser DNME X X X X ASD, stereotypies

UBR7 Reader HMR X X

WHSC1 (NSD2) Writer HMT/HMR X X X X X ASD, stereotypies

ZMYND11 Reader HMR and HAR X X X ASD, aggression

ADHD attention deficit hyperactivity disorder, ASD autism spectrum disorder, DNME DNA methylation eraser, DNMR DNA methylation reader, DNMT DNA 
methyltransferase, HAR histone acetyl group reader, HAT histone acetyltransferase, HDM histone demethylase, HMR histone methyl group reader, HMT histone 
methyltransferase, ID/DD intellectual disability/developmental disability, OCD obsessive compulsive disorder, RE chromatin remodeler, SIB self-injurious behavior
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and tracheal abnormalities [44–46]. Cognitive function-
ing associated with CHARGE syndrome vary significantly 
with some studies reporting from impaired to broadly 
average intellect (IQ 54–92 in a case series of 7 patients) 
[47] albeit nearly half of those with the syndrome present 
with intellectual impairment (IQ < 70) in studies with 
larger samples (study with 50 participants) [48]. Hearing 
loss was represented in about a third of the sample which 
may contribute to speech/language delay [48]. Clini-
cal studies involving patients with CHARGE syndrome 
report primary weaknesses in visuospatial construction, 
sequential processing, and selective attention juxtaposed 
with relative strengths in semantic skills, logical reason-
ing, and planning [47]. Notably, brain malformations, 
microcephaly, and low vision were prognostic predic-
tors of intellectual functioning [49]. The neurobehavio-
ral profile associated with CHARGE syndrome includes 
increased incidence of psychiatric illnesses including 
obsessive compulsive disorder (43–49%) and anxiety dis-
order (37–53%) [50, 51] with potential high comorbidity 
of the two psychopathologies [52]. Depression (8–24%) 
[51, 53, 54] and attention deficit hyperactivity disorder 
(ADHD) (26–34%) [52, 53], self-injurious behaviors (40–
54%) [51, 53–55], and aggressive behaviors (38–53%) [51, 
53, 54, 56] are also commonly found in those with this 
syndrome. Those with dual sensory impairment (deaf-
blind) generally present with more challenging behaviors 
[53]. Autistic behaviors are commonly reported (26–43%) 
[50, 51, 53], although some research suggest these fea-
tures may be due to sensory deficits, such as hearing 
loss and visual impairment, and are qualitatively differ-
ent from the social impairment seen in idiopathic autism 
spectrum disorder [57].

Histone acetylation dysregulation—Rubinstein‑Taybi 
syndrome and KAT6A syndrome
Rubinstein-Taybi syndrome (RTS) and KAT6A syndrome 
are both neurogenetic disorders with variants in genes 
that regulate gene expression via histone acetylation. Het-
erozygous mutations in CREBBP or EP300 genes—both 
involved in encoding transcription cofactors necessary 
for histone acetylation—cause RTS. KAT6A syndrome 
results from pathogenic variants in KAT6A which typi-
cally encodes lysine acetyltransferase and serves as a 
transcriptional coactivator. Despite shared disruptions 
in epigenetic machinery, emergent research suggests 
distinct cognitive and behavioral phenotypes across syn-
dromes. While RTS is generally characterized by intel-
lectual impairment and developmental delay, those with 
mutations in EP300, which represents a little less than 
10% of cases [58], present with a milder form of intellec-
tual disability than patients with variants in CREBBP [59]. 
Those with RTS have been described to show relative 

strengths in strong behavior regulation [60], social com-
munication and affinity for interacting with others [61], 
regardless of severe intellectual impairment [62]. While 
limited studies have characterized cognitive functioning 
utilizing performance-based measures, the few extant 
investigations suggest verbal skills are relatively stronger 
than non-verbal and spatial skills among those with RTS 
[60, 63]. Behaviorally, attention problems, hyperactivity, 
and motor stereotypies are prevalent among those with 
RTS [61, 63]. Two studies report 37–43% of their samples 
with RTS met clinical cut-off for autism spectrum disor-
der utilizing screening questionnaires [64, 65]; however, 
given standardized measures were not used, these results 
may not reflect true prevalence of the developmental dis-
order. Externalizing problems are less consistently docu-
mented in research with RTS, whereas elevated rates of 
anxiety, obsessive compulsive disorder, and depression 
have been reported, particularly with older age [66].

In contrast, those with KAT6A syndrome uniformly 
show intellectual disability and developmental delay—
with receptive/expressive language and communication 
deficits as the most well-documented feature [67]. Nearly 
70% of affected individuals are minimally verbal [68]. 
Comprehension skills are reported to be more preserved 
than expressive language [67]. To date, with the exception 
of St. John et  al. [68], descriptions of the syndrome have 
largely relied on retrospective review of medical history or 
case studies, and thus most non-verbal cognitive functions 
(e.g., non-verbal reasoning, spatial processing, executive 
functions, etc.) remains poorly characterized. Studies have 
documented 25–33% of those with KAT6A syndrome have 
a diagnosis of autism spectrum disorder although the rates 
may vary based on diagnostic methods applied [68]. Emo-
tional disturbances appear to be less of a concern among 
affected individuals [69]. Heterogeneity in measurement 
tools combined with the absence of standardized neu-
ropsychological assessments leave cross-MDEM compari-
sons challenging. Subsequent investigations may consider 
alternate methodologies (e.g., eye tracking) that can cap-
ture cognitive and behavioral processes across syndromes.

Histone methylation dysregulation—Kabuki syndrome and 
Wiedemann‑Steiner syndrome
Kabuki syndrome (KS) and Wiedemann-Steiner syn-
drome (WSS) are two MDEMS caused by pathogenic 
variants of a gene from the same KMT family of pro-
teins. Most cases of KS result from heterozygous vari-
ants in KMT2D (80%) or KMD6A (5–10%) [70], and WSS 
is due to haploinsufficiency of KMT2A [71]. The KMT 
genes encode histone methyltransferases, thus, these 
disorders disrupt histone methylation and chromatin 
remodeling, with both KMT2D and KMT2A also having 
reader domains. Emergent evidence on the cognitive and 
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neurobehavioral phenotypes of KS and WSS suggest some 
shared features. Intellectual functioning associated with 
KS ranges from severe impairment to average function-
ing although mild to moderate intellectual disability con-
stitutes the majority of those affected [72–74]. Likewise, 
intellectual functioning estimates for those with WSS vary 
from moderate intellectual disability to average intelli-
gence [75], with most in the mild to moderate impairment 
range [75, 76]. Interestingly, emergent evidence suggests 
some common characteristics in cognition across KS and 
WSS, with both sharing relative weaknesses in nonverbal 
reasoning, visuoconstruction, and visuospatial skills [74, 
77–79], which implicate abnormal development of hip-
pocampal formation as the potential underpinning of the 
shared pathogenesis of both MDEMs. Executive function-
ing and working memory are generally less affected in 
those with KS [77, 79], whereas recent case series exam-
ining cognitive functions in WSS suggest relative chal-
lenges in these areas [78]. KS is generally associated with 
few behavioral problems with anxiety, obsessive behaviors 
and attention difficulties most often observed by caregiv-
ers [80–82]. Social skills are considered a relative strength 
among those with KS, as individuals have been described 
as sweet and affectionate with relatively more preserved 
social adaptive skills [80, 83] paired with challenges in 

pragmatic language [83, 84]. Those with WSS present 
with elevated rates of anxiety [75, 78, 85] and behaviors 
concerning for ADHD [78, 85]. In contrast to the low lev-
els of aggression seen in those with KS [80–82], relatively 
high rates of aggression [75] and conduct problems have 
been reported among those with WSS [85–87] which may 
be due to poorer executive functioning skills [85–87]. 
Rates of autism spectrum disorder in WSS vary widely 
across case studies given different clinical sample sizes 
and types of assessments used to determine diagnostic 
classification [75, 85, 88], although new evidence high-
lights similar high sociability and strong prosocial skills in 
those affected regardless of diagnosis of intellectual dis-
ability or autism spectrum disorder [88, 89]. In brief, KS 
and WSS are neurogenetic disorders with some common 
neuropsychological characteristics that may be reflective 
of shared disease-causing pathways which can be consid-
ered for future development of clinical trials.

Conclusions
Mendelian disorders of the epigenetic machinery are 
a rapidly expanding group of disorders that almost 
universally have cognitive and behavioral issues as 
core features, and together account for a large propor-
tion of genetic intellectual disability. We can start to 

Fig. 1 Epigenetic modifier proteins control cognition and behavior. An illustration summarizing the broad categories of epigenetic mechanisms 
that are disrupted in select MDEMs. Specifically highlighted are the mechanisms and conditions described in detail in this review. Mutations 
in epigenetic protein modifiers—DNA methylation writers (green marker), erasers (pink eraser), readers (glasses), and chromatin remodelers 
(truck)—drive atypical cognitive and behavioral development in MDEMs. Specifically, loss of function in different components of epigenetic 
machinery results in unique neurodevelopmental disorders. Variants in DNMT3A (a writer) affect DNA methylation causing Tatton Brown Rahman 
syndrome. Variants in TET3 (an eraser) affect DNA demethylation causing Beck Fahrner syndrome. Variants in CHD7 (a remodeler) impact chromatin 
remodeling causing CHARGE syndrome. Variants in CREBBP/EP300 and KAT6A (primary writers with a reader component) result in histone 
acetylation dysregulation causing Rubinstein Taybi syndrome and KAT6A syndrome, respectively. Variants in KMT2D (primary writer with reader 
component)/KDM6A (eraser) and KMT2A (primary writer with reader component) dysregulate histone methylation causing Kabuki syndrome and 
Wiedemann‑Steiner syndrome, respectively
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understand the mechanisms of epigenetic control of 
cognition and behavior by not only examining simi-
larities and differences in the cognitive and behav-
ioral endophenotypes of MDEMs as an entire group, 
but also by dividing them into the epigenetic function 
of the protein translated from the causative gene, e.g., 
histone methyltransferases, chromatin remodelers, 
DNA methylation erasers, etc. (Fig. 1).

As science further elucidates the role of epigenetics 
in neurodevelopment, and more and more MDEMs are 
discovered that cause cognitive and behavioral issues, 
this area of study holds a great deal of promise not only 
for understanding how typical cognition and behavior is 
controlled but also for therapies for neurodevelopmen-
tal disabilities. One such area of promise is in the use 
of genome-wide DNA methylation “signatures". Most 
MDEMs as well as a number of other genetic NDD 
syndromes such as fragile X, have a very specific pat-
tern of DNA methylation at certain identified regions of 
the genome that is extremely differentiated from unaf-
fected individuals and from those with other genetic 
syndromes that it can be used to diagnose these dis-
orders [90, 91]. While this alone is very exciting, even 
more intriguing is the idea that subtle variations within 
these syndrome-specific signatures may correlate with 
aspects of the cognitive and behavioral phenotype and 
can be used not only for diagnosis but also for progno-
sis and therapeutic monitoring [92]. In the future, larger 
sample sizes of individuals with MDEMs with known 
episignatures need to undergo systematic deep pheno-
typing combined with genome-wide DNA methylation 
analysis in order to identify correlations both within and 
between syndromes. This can also help to identify com-
mon signature loci and attributes for certain neurode-
velopmental endophenotypes. Moreover, these findings 
and methodology may be applied to much more broad 
categories of neurodevelopmental and neuropsychiatric 
disorders.

Finally, this area of research involving MDEMs is likely 
to lead to novel and effective therapies for neurodevel-
opmental and neuropsychiatric disorders more broadly. 
While MDEMs are the example of the most direct and 
detrimental dysregulations of the epigenetic machinery, 
numerous other disorders from autism to epilepsy to 
schizophrenia have been linked to epigenetic machinery 
dysfunction [93–95]. Therapies used in these MDEMs to 
restore epigenetic balance may also prove very beneficial 
for a host of more common conditions. In effect, these 
rare genetic NDDs may be an important window to the 
understanding of the developmental processes of cogni-
tion and behavior in the human brain as well as possible 
treatment mechanisms to address disruptions in these 
pathways.
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