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Abstract 

Background ADHD polygenic scores (PGSs) have been previously shown to predict ADHD outcomes in several stud-
ies. However, ADHD PGSs are typically correlated with ADHD but not necessarily reflective of causal mechanisms. More 
research is needed to  elucidate the neurobiological mechanisms underlying ADHD. We leveraged functional anno-
tation information into an ADHD PGS to (1) improve the prediction performance over a non-annotated ADHD PGS 
and (2) test whether volumetric variation in brain regions putatively associated with ADHD mediate the association 
between PGSs and ADHD outcomes.

Methods Data were from the Philadelphia Neurodevelopmental Cohort (N = 555). Multiple mediation models were 
tested to examine the indirect effects of two ADHD PGSs—one using a traditional computation involving clumping 
and thresholding and another using a functionally annotated approach (i.e., AnnoPred)—on ADHD inattention (IA) 
and hyperactivity-impulsivity (HI) symptoms, via gray matter volumes in the cingulate gyrus, angular gyrus, caudate, 
dorsolateral prefrontal cortex (DLPFC), and inferior temporal lobe.

Results A direct effect was detected between the AnnoPred ADHD PGS and IA symptoms in adolescents. No indirect 
effects via brain volumes were detected for either IA or HI symptoms. However, both ADHD PGSs were negatively 
associated with the DLPFC.

Conclusions The AnnoPred ADHD PGS was a more developmentally specific predictor of adolescent IA symptoms 
compared to the traditional ADHD PGS. However, brain volumes did not mediate the effects of either a traditional 
or AnnoPred ADHD PGS on ADHD symptoms, suggesting that we may still be underpowered in clarifying brain-based 
biomarkers for ADHD using genetic measures.
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Background
Attention-deficit/hyperactivity disorder (ADHD) is a 
neurodevelopmental disorder that affects 3–6% of youths 
and adults worldwide [1, 2]. Genes explain a substantial 
proportion of the variance in ADHD [3], accounting for 
an estimated 70 to 80% of its variation [4, 5]. Genome-
wide association (GWA) studies have identified several 
key genetic variants associated with ADHD [6, 7], but it 
is widely believed that there are many genes of individu-
ally small effects that contribute to its etiology [3, 8, 9]. 
Polygenic scores (PGSs) are typically used to quantify a 
person’s polygenic risk for a trait of interest [10]. PGSs 
are typically computed as the sum of the number of risk 
alleles at each genetic locus weighted by their effect sizes, 
which are informed by summary statistics of a GWA 
study. According to multiple meta-analyses, ADHD PGSs 
explain approximately 4% of the variance in ADHD out-
comes across studies and populations [3, 9]. By com-
parison, the most statistically significant genetic variant 
identified in the ADHD GWA study accounted for a 
miniscule .1% of the variance in ADHD [6].

ADHD PGSs correlate with ADHD outcomes across 
many studies because the genetic effect sizes that are 
used in their computations are based entirely on the sta-
tistical associations (usually as regression betas or odds 
ratios) between individual level genotypes and a trait 
of interest conducted in a large GWA study. However, 
PGS associations with trait outcomes may not necessar-
ily reflect casual (e.g., neurobiological) signals [3]. This 
knowledge is needed to help elucidate unique neuro-
biological mechanisms for ADHD, which can then con-
tribute to the development of novel therapeutic targets. 
Notably, ADHD GWA studies already provide valuable 
biological information, but this information has rarely 
been leveraged in ADHD PGS studies. For instance, a 
functional annotation of the genetic variants associated 
with ADHD showed significant overrepresentation in 
regulatory regions of DNA in cells in the anterior caudate, 
cingulate gyrus, angular gyrus, dorsolateral prefrontal 
cortex (DLPFC), and inferior temporal lobe, suggesting 
that ADHD-associated variants may be involved in the 
regulation of gene expression in these five brain regions 
and influence their structure and function [6]. Further-
more, several of the GWA-associated ADHD genes (e.g., 
SORCS3, DUSP6, SEMA6D) are involved in neurotrans-
mission, neuronal development, and neuronal plasticity. 
Despite the wealth of neurobiological information gained 
from powerful ADHD GWA studies, these data have not 
been incorporated in ADHD PGS applications.

One powerful approach to do so is called AnnoPred, 
a statistical method that upweights genetic variants 
located in annotation categories that are overrepresented 
in a GWA study of interest [11]. Annotation categories 

include enhancers, promoters, conserved regions, coding 
regions, transcription factor binding sites, and cell-type 
specific epigenomic marks in the central nervous system, 
immune system, cardiovascular system, gastrointestinal 
system, and skeletal muscles. Upweighted genetic vari-
ants are considered more functionally relevant (by effect 
size) for a trait of interest. The AnnoPred PGS method 
demonstrated superior accuracy in complex trait predic-
tions compared to other PGS methods [11]. Thus, meth-
ods such as AnnoPred should not only improve ADHD 
PGS prediction performance over a non-annotated 
ADHD PGS, but it should also provide more signal for 
elucidating potential neurobiological pathways of risk for 
ADHD given that AnnoPred PGS specifically upweights 
functionally relevant signals.

In addition to gene enrichment findings from ADHD 
GWA studies [6], other possible brain-based mecha-
nisms underlying the risk for ADHD come from the 
broader neuroimaging literature [12, 13]. Several stud-
ies have reported associations between smaller regional 
volumes in areas such as the caudate, prefrontal cortex, 
temporal lobe, cingulate cortex, and cerebellum in sam-
ples of children and adolescents with ADHD compared 
to controls [14–17]. In particular, the caudate and dor-
solateral prefrontal cortex have been extensively impli-
cated in ADHD studies [18–21]. The caudate nucleus 
is involved in motor movement, associative learning, 
memory, and goal-directed behavior and was found to 
be coactive with the DLPFC and anterior cingulate cor-
tex during a range of cognitive and motor tasks [22]. The 
DLPFC is linked to higher level cognitive function such 
as inhibition, planning, and working memory [23]. Sig-
nificantly smaller caudate nucleus and DLPFC have been 
documented in youths with ADHD relative to typically 
developing youths [16, 19]. Other studies have shown 
that brain volume differences between children with 
ADHD and controls are more dispersed over the brain 
than previously hypothesized. For example, several stud-
ies have reported volumetric reductions in the temporal 
lobe and cingulate cortex in youths with ADHD relative 
to controls [15, 20, 24, 25].

Whereas prior studies investigated genetic and brain 
volume associations with ADHD as separate mecha-
nisms, Alemany and colleagues [26] examined whether 
brain volume might mediate genetic associations (via 
PGSs) of several psychiatric traits and disorders, includ-
ing schizophrenia, depression, bipolar disorder, ADHD, 
and autism. This study examined the association between 
PGSs for five psychiatric disorders and volume of several 
brain regions of interest (i.e., amygdala-hippocampus 
complex, caudate, putamen, thalamus, cerebellum, total 
brain, ventricles, cortical and subcortical gray matter, and 
total white matter) in a large, population-based sample 
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of 9–11-year-old children (n = 1139). ADHD PGSs were 
associated with smaller caudate volume but not the other 
regions, and the association between the ADHD PGS 
and male-specific attention problems was mediated by 
caudate volume, in line with the well-replicated associa-
tion between caudate and ADHD. Their findings provide 
compelling (albeit still limited) evidence that ADHD 
PGSs may more proximally tap into biological signals in 
the development of ADHD.

However, one critical limitation of the prior study 
[26] is that development was not accounted for. ADHD 
symptom presentations vary depending on the age of the 
individual [27, 28]. For instance, while inattention (IA) 
symptoms tend to be relatively stable throughout devel-
opment, hyperactivity/impulsivity (HI) symptoms tend 
to decline by adulthood [27, 29]. Thus, volumetric brain 
differences between ADHD and control samples may 
be age-dependent. In a mega-analysis of 23 cohorts of 
ADHD cases and cohorts (n = 3200), researchers found 
that volumetric differences between groups were larger 
among children (aged between 4 and 14) than among 
adolescents (aged between 15 and 21) or among adults 
(aged 22–63) [30]. Specifically, they found that accum-
bens, amygdala, caudate, hippocampus, putamen, and 
total intracranial volume were smaller in youths with 
ADHD than in controls, whereas only the hippocampus 
was significantly smaller in adolescents with ADHD rela-
tive to controls; no brain volume differences were found 
in adults with ADHD compared to controls. Another 
study compared whole-brain volume and subcortical 
regional volume between individuals with ADHD and 
controls in a Dutch sample of youths and adults (n = 672). 
They reported a reversal in the direction of difference 
between cases and controls among young adolescents 
(aged 8–15), older adolescents (aged 16–22), and young 
adults (aged 22–30), such that caudate and putamen 
volume were smaller in adolescents with ADHD than 
controls, but larger in young adults with ADHD than 
controls [31]. The more restricted and younger age range 
of the adult sample in the latter study [31] likely contrib-
uted to the inconsistent findings compared to the first 
study [30]. In light of these inconsistent findings, devel-
opmental considerations should be taken into account in 
genetically-informed studies of ADHD.

This current study focused on children (aged 8–11), 
adolescents (aged 12–17), and young adults (aged 18–21) 
from the Philadelphia Neurodevelopmental Cohort 
(PNC). Although ADHD PGSs are frequently used in 
clinical samples, they are also predictive of psychiatric 
traits in population samples as well, as demonstrated in 
the meta-analysis of ADHD PGSs across several studies 
[3]. Examining PGSs in population-based cohorts like 
PNC will enhance our understanding of the neurogenetic 

basis of ADHD in a typically developing sample. We spe-
cifically examined whether brain volumes in five regions 
of interests (i.e., caudate, cingulate gyrus, angular gyrus, 
DLPFC, and inferior temporal lobe) will statistically 
mediate the association between PGSs and ADHD. PGSs 
were computed in two ways, one as a “traditional” PGS 
(i.e., the clumping/pruning + thresholding method [10]) 
and another that leverages functional annotations of 
genetic variants from a GWA study of ADHD via Anno-
Pred [11]. First, we hypothesized that both the traditional 
and AnnoPred PGS will associate with ADHD outcomes 
(i.e., HI and IA symptoms) across age groups. Second, 
and based on previously reported age-related brain vol-
ume differences between ADHD cases and controls 
across age groups, we hypothesized that the volumes 
of all five brain regions will mediate the associations 
between the AnnoPred ADHD PGS (given that that it is a 
more biologically-informed measure of polygenic liability 
over the traditional ADHD PGS) and ADHD outcomes 
in children and adolescents, but not in adults. We made 
no hypothesis regarding potential genetic differences for 
ADHD IA and HI symptoms given that there have been 
no strong lines of evidence suggesting differential ADHD 
PGS associations by ADHD presentation type.

Method
Participants
The Philadelphia Neurodevelopmental Cohort (PNC) 
is a population-based cohort of children, adolescents, 
and young adults with data collected on psychiatric 
disorders, medical history, neuroimaging, genetics, 
and neurocognition. Participants were recruited from 
the greater Philadelphia, Pennsylvania, area between 
November 2009 and December 2011 [32]. Psychiatric 
disorders were assessed using a semi-structured, com-
puterized clinical interview adapted from the Kiddie 
Schedule for Affective Disorders and Schizophrenia 
(K-SADS). The interview was administered to caregiv-
ers or legal guardians (i.e., collaterals) for participants 
aged 8 to 10 (i.e., children; analytic n = 137), to par-
ticipants and collaterals for participants aged 11 to 17 
(i.e., adolescent; analytic n = 297), and to participants 
themselves if they were between the ages of 18 and 
21 (i.e., young adults; analytic n = 121). To ensure that 
there was some degree of consistency with respect to 
raters, we used data from collaterals for participants 
between 8 and 17 years of age and from self-report 
for those older than 18. For additional details on phe-
notyping and coding, please refer to He and Li [33]. 
Due to known population stratification effects in ad-
mixed samples and the fact that many PGSs are highly 
underpowered to predict outcomes in non-European 
ancestry populations [34, 35], we focused the current 
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analyses on PNC individuals who self-reported as Euro-
pean ancestry with genotypic, phenotypic, and neuro-
imaging data (after quality control), resulting in a total 
analytic N of 555.

Brain imaging and data processing
Neuroimaging details for the PNC sample are provided 
in Sattherwaite et  al. [32] and are briefly summarized 
here. Data were acquired from a 3T Siemens TIM Trio 
scanner at the University of Pennsylvania. The structural 
images used for this study were obtained via a magnet-
ization-prepared 180° radio-frequency pulses and rapid 
gradient-echo (MPRAGE) sampling sequence (TR = 1810 
ms, TE = 3.5 ms, 160 1 mm slices).

Freesurfer (v. 7.1.1) [36] was used to automatically 
parcellate and segment the five regions of interest (ROI) 
used in the study (caudate, cingulate gyrus, angular 
gyrus, dorsolateral prefrontal cortex, and inferior tem-
poral lobe). These regions were pre-selected based on 
previous evidence of enrichment for ADHD genetic 
associations [3, 6]. The command recon_all., with all 
default parameters taken, was used with processing steps 
briefly summarized here; the processing stream per-
forms the following sequential steps: skull stripping, vol-
umetric labeling, intensity normalization, white matter 
segmentation, surface atlas registration, surface extrac-
tion, and gyral labeling. The Destrieux atlas [37] was 
used to extract gray matter volume estimates from ROIs 
by hemisphere. Bilateral ROI volume were used as the 
mediators, per empirical precedent [38]. To account for 
the influence of head motion during a scan on the neu-
roimaging data quality, Euler Numbers for cortical sur-
faces were extracted by hemisphere from Freesurfer. We 
averaged across both hemispheres and used the bilateral 
average Euler Numbers as a covariate in all analyses, per 
empirical precedent [39].

ADHD symptoms
IA and HI ADHD symptoms were assessed from six and 
three dichotomous items (yes/no responses) adminis-
tered on the adapted K-SADS, respectively. Example 
items included: “Did you often have trouble paying atten-
tion or keeping your mind on your school, work, chores, 
or other activities that you were doing?”, “Did you often 
have trouble making plans, doing things that had to be 
done in a certain kind of order, or that had a lot of dif-
ferent steps?”, and “Did you often blurt out answers to 
other people’s questions before they finished speaking 
or interrupt people abruptly?”. Symptom counts of the 
two ADHD dimensions were computed by summing the 
number of endorsed items for each dimension.

Genotyping and polygenic scores
Genotyping in PNC
All participants were genotyped upon consent using 
common single nucleotide polymorphism (SNP) arrays 
including Affymetrix Affy60 and Axiom, and Illumina 
HumanHap550 (v1, v3), Human610-Quad (v1), and 
HumanOmniExpress. We applied pre-imputation quality 
control measures to our genotype data, including remov-
ing SNPs with minor allele frequencies (MAF) < 5%, 
Hardy–Weinberg equilibrium p values < 1.0e − 4, and call 
rates < 95%. We phased and imputed the genotype data 
using the Haplotype Reference Consortium reference 
panel version r1.1 2016 available on the Michigan Impu-
tation server [40]. After imputation, we further removed 
duplicated and strand-ambiguous SNPs, as well as SNPs 
with MAF < 0.01 or an imputation quality score below 
0.8. Samples genotyped using different arrays were pro-
cessed in separate batches.

Discovery GWA study
The ADHD GWA study was a case–control meta-analysis 
that consisted of 55,374 children and adults (20,183 cases 
and 35,191 controls) from 12 studies of mixed (but pre-
dominantly European) ancestries [6]. The largest cohort 
among these 12 studies was a population-based case–
control cohort in Denmark (iPSYCH; 14,584 cases and 
22,492 controls). The other 11 case–control or trio sam-
ples were collected in Europe, Canada, USA, and China 
and aggregated by the Psychiatric Genomic Consortium. 
ADHD case status was determined based on Interna-
tional Classification of Diseases, tenth revision (ICD-10) 
in iPSYCH, and semi-structured clinical interviews (e.g., 
Schedule for Affective Disorders and Schizophrenia for 
School-Age Children, K-SADS) in the other 11 cohorts.

Traditional PGS (i.e., clumping/pruning + thresholding)
To construct the traditional PGS, we used PLINK [41] to 
clump ADHD GWA study summary statistics and used 
the European ancestry samples in the 1000 Genomes 
Project Phase III cohort [42] as the linkage disequilibrium 
(LD) reference panel. We then specified an LD window 
size of 1000 kb and a r2 threshold of 0.1 for clumping. 
Finally, we generated an ADHD PGS in the PNC tar-
get sample using PRSice-2 software [43] and specified a 
p value threshold of 1.0, which allowed us to include all 
available SNP information while also facilitating the gen-
eralizability of our findings to other samples.

AnnoPred PGS
We also constructed a PGS for ADHD using AnnoPred 
[11], a Bayesian framework that leverages genomic anno-
tation information to improve polygenic risk prediction. 
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This approach improves SNP effect size estimation by 
integrating publicly available ADHD GWA study data [6] 
and ADHD heritability enrichment in various functional 
annotation categories estimated using linkage disequilib-
rium score regression (LDSC) [44]. We incorporated 53 
baseline annotations in LDSC [44], GenoCanyon annota-
tion quantifying the overall genomic functionality [45], 
and 66 GenoSkylinePlus cell-type specific annotations 
[46] to improve the ADHD AnnoPred score. We used 
1000 Genomes Project European samples [42] as the link-
age disequilibrium reference and the infinitesimal prior 
in AnnoPred to produce SNP posterior mean effects.

Analyses
We fit parallel multiple mediation models that included 
brain volumes of five ROIs (caudate, cingulate gyrus, 
angular gyrus, DLPFC, and inferior temporal lobe) as 
mediators, ADHD PGSs (traditional and AnnoPred) 
as predictors, and ADHD IA and HI symptoms as out-
comes. In statistical mediation, the bivariate association 
between the predictor and the outcome is termed a total 
effect. The association between the predictor and the out-
come via mediators is termed the indirect effect. Finally, 
the association between the predictor and the outcome 
after accounting for the mediators is termed the direct 
effect [47]. Parallel multiple mediation models were con-
ducted to account for expected correlations among the 
volumes of each of the five brain regions. Given the num-
ber of models and tests conducted, p values were false 
discover rate (FDR) adjusted using the Benjamin-Hoch-
berg method [48]1. In age-stratified analyses, we divided 
the sample by age groups (8–11-year-olds were labeled 

as “children,” 12–17-year-olds were “adolescents,” and 
18–21-year-olds were “young adults”) to test age-specific 
effects of PGSs and indirect effects of PGSs via the vol-
umes of the five brain regions. Model fit was evaluated 
using the Comparative Fit Index (“good” =  > .95) and the 
root mean square error of approximation (“good” =  < .06) 
[49]. Analyses were conducted in R 4.1.2 using the follow-
ing packages: semTools, lavaan, psych, and stats. Age, bio-
logical sex, standardized total intracranial volume, Euler 
Numbers, and the first 10 genetic principal components 
to account for population stratification were included as 
covariates in all models. It should be noted that covary-
ing out genetic principal components does not correct 
for all population stratification effects, however [50].

Results
Descriptive statistics
The average age of the PNC sample was 14.36 (sd = 3.39), 
with 272 (49.10%) female participants. When strati-
fied by age groups (i.e., children, adolescents, and young 
adults), the average age was 9.672 (sd = 1.058), 14.790 
(sd = 1.710), and 18.64 (sd = 0.837), respectively. Further-
more, 46.715% (n = 64), 46.464% (n = 138), and 57.851% 
(n = 70) were females across these age groups, respec-
tively. Participants had an average of 2.489 (sd = 3.080), 
2.037 (sd = 2.883), and 2.380 (sd = 2.675) ADHD symp-
toms, respectively. More details of the sample are shown 
in Table  1, including standardized (in the full sample) 
regional brain volume and total intracranial volume.

Traditional ADHD PGS—full sample
Multiple mediation models for IA and HI symptoms fit 
the data well (CFI = .995, RMSEA = .096 for both mod-
els). We found no significant total and direct effects of 
the traditional ADHD PGS on either HI or IA symptoms 

Table 1 Descriptive statistics

Full Children Adolescents Young adults

N 555 137 297 121

Age (sd) 14.360 (3.394) 9.672 (1.058) 14.790 (1.710) 18.640 (.837)

Biological sex (# female/percentage) 272 (49.100%) 64 (46.715%) 138 (46.464%) 70 (57.851%)

ADHD total symptoms (sd) 2.223 (2.891) 2.489 (3.080) 2.037 (2.883) 2.380 (2.675)

ADHD inattention symptoms (sd) 1.634 (2.173) 1.759 (2.235) 1.562 (2.249) 1.669 (1.908)

ADHD hyperactivity/impulsivity symptoms (sd) .589 (.967) .729 (1.068) .475 (.893) .711 (.995)

Brain regions (volume)

  Angular gyrus, standardized (sd)  − .010 (.867) .458 (.872)  − .049 (.803)  − .044 (.754)

  Caudate, standardized (sd)  − .011 (.975) .302 (.935)  − .068 (.987)  − .227 (.909)

  Cingulate gyrus, standardized (sd)  − .013 (.988) .469 (.874)  − .044 (.984)  − .485 (.872)

  DLPFC, standardized (sd)  − .015 (.983) .547 (.934)  − .073 (.934)  − .511 (.906)

  Inferior temporal lobe, standardized (sd)  − .008 (.996) .328 (.890) .022 (.947)  − .460 (1.062)

  Total intracranial volume,  mm3 (sd) 1413671 (143764.2) 1417708 (114153.5) 1421687 (146137.3) 1389422 (164925.8)

1 For clarity, we refer to the p values as “FDR-adjusted p values”.
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(see Fig. 1; FDR-corrected p > .05). Furthermore, no indi-
rect effects emerged with the traditional ADHD PGS on 
HI or IA symptoms via the volumes of angular gyrus, 
caudate, cingulate gyrus, DLPFC, and the inferior tem-
poral lobe. However, the traditional ADHD PGS was 
negatively associated with DLPFC volume (b =  − .090, 
se = .028, FDR-corrected p = .002). In addition, cingulate 
gyrus volume was positively associated with HI symp-
toms (b = .182, se = .065, FDR-corrected p = .020).

Traditional ADHD PGS—age‑stratified models
The same models were tested separately in each of the 
three age groups to investigate the possibility of develop-
mental differences of the traditional ADHD PGS on IA 
and HI symptoms, and the possible mediational effects 
via the volumes of angular gyrus, caudate, cingulate 
gyrus, DLPFC, and the inferior temporal. For children 
(n = 137), the models fit well for IA and HI symptoms 
(CFI = .999, RMSEA = .042 for both models). No total, 
direct, or indirect effects via the volumes of the five brain 
regions were detected (Fig.  2). The traditional ADHD 
PGS was also not associated with any of the five brain vol-
umes. However, the angular gyrus volume was negatively 

associated with IA symptoms (b =  − .599, se = .237, FDR-
corrected p = .024).

Similarly, no total or direct effects of the traditional 
ADHD PGS nor indirect effects via the volumes of the 
five brain regions were detected for adolescents (n = 297) 
(Fig. 2). The models for IA and HI symptoms fit accept-
ably (CFI = .992, RMSEA = .118 for both models). The 
traditional ADHD PGS was negatively associated with 
DLPFC volume (b = -.093, se = .037, FDR-corrected 
p = .024). Additionally, cingulate gyrus volume was posi-
tively associated with HI symptoms (b = .212, se = .083, 
FDR-corrected p = .040), and caudate volume was nega-
tively associated with IA symptoms (b =  − .361, se = .160, 
FDR-corrected p = .048).

For young adults, the models fit well for both IA and 
HI symptoms (CFI = .998, RMSEA = .032 for both mod-
els). We observed no total or direct effects of the tradi-
tional PGS nor indirect effects of the traditional PGS 
via the volumes of the five brain regions in young adults 
(see Fig.  2). In addition, no associations were detected 
between the traditional ADHD PGS and brain volumes, 
nor between any of the brain volumes and HI or IA 
symptoms (see Fig. 2).

A. Traditional PGS – ADHD IA symptoms in Full Sample

B. Traditional PGS – ADHD HI symptoms in Full Sample
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Fig. 1 Multiple mediation paths between traditional ADHD PGS and ADHD symptoms via five brain regions in the full sample of youths and young 
adults in PNC
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AnnoPred ADHD PGS—full sample
The models for IA and HI symptoms fit well (CFI = .995, 
RMSEA = .098 for both models). There was neither a 
total nor direct effect of the AnnoPred ADHD PGS on HI 
or IA symptoms (Fig. 3). There was also no total indirect 
effect of the AnnoPred ADHD PGS on IA or HI symp-
toms via the volumes of the five brain regions. However, 
the AnnoPred ADHD PGS was negatively associated 
with DLPFC volume (b =  − .066, se = .029, FDR-corrected 
p = .022). Additionally, cingulate gyrus volume was posi-
tively associated with HI symptoms (b = .184, se = .078, 
FDR-corrected p = .038).

AnnoPred ADHD PGS—age‑stratified models
For children, the models fit well for IA and HI symptoms 
(CFI = .998, RMSEA = .051 for both models). Total and 
direct effects of the AnnoPred ADHD PGS on HI and 
IA symptoms were not significant, nor were the indirect 
effects via the volumes of five brain regions (Fig. 4). The 
AnnoPred ADHD PGS was also not associated with any 
of the volumes of the five brain regions. However, angular 
gyrus volume was negatively associated with IA symp-
toms (b =  − .641, se = .239, FDR-corrected p = .024).

For adolescents, the models fit acceptably for IA and HI 
symptoms (CFI = .992, RMSEA = .118 for both models). 

There was a direct effect of the AnnoPred ADHD PGS on 
IA symptoms (b = .346, se = .135, FDR-corrected p = .044), 
but not on HI symptoms. No total or indirect effects of 
the AnnoPred ADHD PGS emerged for IA or HI symp-
toms via the five brain volumes (Fig.  4). The AnnoPred 
ADHD PGS was also not associated with any of the five 
brain volumes. However, caudate volume was negatively 
associated with IA symptoms (b =  − .362, se = .159, FDR-
corrected p = .048).

Finally, for young adults the models fit well for IA and 
HI symptoms (CFI = .999, RMSEA = .032 for both mod-
els). We detected no significant total or direct effect of 
the AnnoPred ADHD PGS, nor were there significant 
indirect effects of the AnnoPred ADHD PGS via the vol-
umes of five brain regions (Fig.  4). No association was 
detected between the AnnoPred ADHD PGS and brain 
volumes, nor between brain volumes with IA and HI 
symptoms (Fig. 4).

Conclusions
The primary objective of this study was to investigate 
whether associations between ADHD outcomes and two 
types of ADHD PGSs, one computed using a traditional 
method and another that was biologically informed using 
the AnnoPred method, would be mediated by volumes of 

A. Traditional PGS – ADHD IA symptoms in Children B. Traditional PGS – ADHD HI symptoms in Children

C. Traditional PGS – ADHD IA symptoms in Adolescents D. Traditional PGS – ADHD HI symptoms in Adolescents

E. Traditional PGS – ADHD IA symptoms in Young Adults F. Traditional PGS – ADHD HI symptoms in Young Adults

Traditional
PGS

AngGyrus

Caudate

CingGyrus

DLPFC

InfTempLobe

ADHD IA
Total effect: .132 (.187)

Direct effect: .120 (.185)

-.599
(.237)*

-.033 (.227)-.198 (.335)
.051 (.296)

.310 (.264)

-.
02
7
(.
06
8)

-.0
59
(.0
69
)

-.0
35

(.0
56
)

-.0
76

(.0
61)

.075
(.06

4)

Traditional
PGS

AngGyrus

Caudate

CingGyrus

DLPFC

InfTempLobe

ADHD HI
Total effect: .049 (.090)

Direct effect: .043 (.089)

-.
02
7
(.
06
8)

-.0
59
(.0
69
)

-.0
35

(.0
56
)

-.0
76

(.0
61)

.075
(.06

4)

-.161
(.110).014
(.108)

-.102 (.135)
.084 (.123)

.181 (.117)

Traditional
PGS

AngGyrus

Caudate

CingGyrus

DLPFC

InfTempLobe

ADHD IA
Total effect: .231 (.134)

Direct effect: .235 (.133)

.044
(.192)-.361
(.160).475 (.254)*

.079 (.251)

-.159 (.194)

.0
18
(.0
42
)

-.0
47
(.0
49
)

-.0
25

(.0
36
)

-.0
93

(.0
37)

*

.015
(.04

2)

Traditional
PGS

AngGyrus

Caudate

CingGyrus

DLPFC

InfTempLobe

ADHD HI
Total effect: .051 (.053)

Direct effect: .057 (.053)

-.092
(.072)-.113
(.062).212 (.083)*

.033 (.082)

-.075 (.071)

.0
18
(.0
42
)

-.0
47
(.0
49
)

-.0
25

(.0
36
)

-.0
93

(.0
37)

*

.015
(.04

2)

Traditional
PGS

AngGyrus

Caudate

CingGyrus

DLPFC

InfTempLobe

ADHD IA
Total effect: .060 (.191)

Direct effect: .074 (.194)

-.095
(.301).028
(.213)

.107 (.374)

.432 (.327)

-.329 (.242)

-.
00
3
(.0
61
)

.0
05
(.0
82
)

.04
8 (
.05

9)

-.1
05

(.0
65)

-.079
(.07

8)

Traditional
PGS

AngGyrus

Caudate

CingGyrus

DLPFC

InfTempLobe

ADHD HI
Total effect: .042 (.100)

Direct effect: .027 (.099)

.019
(.145)-.021
(.108)

.255 (.149)
.115 (.135)

-.189 (.114)
-.
00
3
(.
06
1)

.0
05
(.0
82
)

.04
8 (
.05

9)

-.1
05

(.0
65)

-.079
(.07

8)

Fig. 2 Multiple mediation paths between traditional ADHD PGS and ADHD symptoms via brain regions in children, adolescents, and adults in PNC
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five brain regions—the caudate, cingulate gyrus, angular 
gyrus, DLPFC, and inferior temporal lobe—in a popula-
tion-based dataset of children, adolescents, and young 
adults. We also examined age-stratified effects of the 
potential mediation pathways between ADHD PGSs and 
ADHD symptoms. With respect to our first hypothesis, 
we found that the traditional ADHD PGS was not asso-
ciated with either IA or HI symptoms across all devel-
opmental age groups. However, the AnnoPred ADHD 
PGS was associated with IA symptoms, but only in ado-
lescents. With respect to our second hypothesis, brain 
volumes of the caudate, cingulate gyrus, angular gyrus, 
DLPFC, and the inferior temporal lobe did not statis-
tically mediate the association between the AnnoPred 
ADHD PGS on IA and HI ADHD symptoms. This was 
consistent in our mediation models in the full sample and 
in the age-stratified models.

First, we found that the AnnoPred ADHD PGS was 
associated with IA (but not HI) symptoms for adoles-
cents specifically. In contrast, the traditional ADHD PGS 
was not associated with ADHD outcomes in any of our 
models. Incorporating biological information into PGS 
computations may yield more developmentally sensitive 

predictive signals for ADHD symptoms than traditional 
ADHD PGSs, which have previously been shown to be 
less discriminative between various age groups [3, 9]. One 
reason is that there may be distinct genetic influences 
for ADHD that depend on the age and developmental 
stage of the individual [1, 51–54]. This possibility is sup-
ported by evidence from another ADHD GWA study, 
which found distinct genetic architectures underlying 
childhood ADHD, persistent ADHD, and late-diagnosed 
ADHD [55]. Our finding also supports the possibility that 
the genetic liability for ADHD may be developmentally 
specific, such that the AnnoPred ADHD PGS was only 
associated with IA but not HI symptoms in adolescence, 
which is consistent with the relative stability of IA symp-
tomology over time in individuals [27].

Our findings did not support our second hypothesis 
that the association between AnnoPred ADHD PGS and 
ADHD symptoms would be mediated by brain volumes. 
In fact, the lack of strong associations between the Anno-
Pred ADHD PGS and the volumes of caudate, cingulate 
gyrus, angular gyrus, DLPFC, and the inferior temporal 
lobe, and between the volumes of these five brain regions 
and ADHD symptoms may be due to the non-clinical 
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Fig. 3 Multiple mediation paths between AnnoPred ADHD PGS and ADHD symptoms via brain regions in the full sample of children, adolescents, 
and young adults in PNC
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population of the PNC dataset. The relative lack of vari-
ability in ADHD symptomology in the PNC dataset may 
have limited our power to detect strong effect sizes in 
our study. In addition, most structural MRI studies of 
ADHD and ADHD GWA were conducted with case–
control samples of youths and/or adults [56]. The brain 
regions we focused on in our study were informed by 
these ADHD case–control studies, which may not have 
been generalizable to large population-based studies [57]. 
Future studies should examine the possibility that neuro-
genetic mechanisms of ADHD may differ between clini-
cal and the general population samples [58].

However, we did detect a negative association between 
both the traditional and AnnoPred ADHD PGSs and 
DLPFC volumes. Although DLPFC volume was not asso-
ciated with ADHD symptoms perhaps due to the limited 
variability in ADHD symptoms in the PNC sample, prior 
studies have found that the DLPFC was the most enriched 
region with respect to ADHD-associated genetic variants 
relative to the other brain regions we tested [6, 19]. In our 
age-stratified analyses, we also observed a negative asso-
ciation between the traditional ADHD PGS and DLPFC 
volume in adolescents specifically, which might be 

attributable to an increased heritability of DLPFC volume 
from childhood to adolescence [59, 60]. Given that our 
study was cross-sectional, future studies should explore 
changes in the heritability of brain measures in relation 
to the development of ADHD.

Additionally, we found a positive association between 
cingulate gyrus volume and HI symptoms in the full sam-
ple and in adolescents specifically. This finding was incon-
sistent from prior literature which found reduced volume 
in the cingulate cortex in youths and adults with ADHD 
relative to controls [15, 56, 61]. The cingulate gyrus is 
known for its role in controlled cognition, response inhi-
bition, novelty detection, and motivation [61]. We posit 
two possible explanations for our findings. First, previous 
studies regressed the volume of each region of interests 
separately on ADHD status, along with a set of covari-
ates (e.g., biological sex, age, total intracranial volume). 
Our study examined the cingulate simultaneously with 
several other brain regions within a multiple mediator 
framework (in addition to accounting for other covari-
ates), thereby accounting for the high degree of covaria-
tion between these brain regions. Additionally, previous 
studies were conducted in clinical and/or case–control 
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Fig. 4 Multiple mediation paths between AnnoPred ADHD PGS and ADHD symptoms via brain regions in children, adolescents, and young adults 
in PNC
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samples. The cingulate cortex along with other previ-
ously implicated brain regions for ADHD may associate 
with natural variations in ADHD symptoms differently in 
population-based samples that feature lesser severity and 
greater heterogeneity of ADHD presentations.

Our study was limited by several noteworthy issues. 
First, our measure of ADHD in young adults was based 
on retrospective self-reports, whereas ADHD was 
measured in children and adolescents using collat-
eral (i.e., parent) reports. Reporter heterogeneity [62] 
may have affected the generalizability/comparability of 
our findings between children/adolescents and young 
adults in our study. Relatedly, self-reported measures 
of ADHD could be related to lower heritability esti-
mates relative to ADHD reported by other informants 
[63]. Second, medication statuses were unknown, thus 
precluding our ability to test whether our findings were 
robust against the effect of medication on both ADHD 
symptoms and on cortical maturation. Third, ADHD 
IA and HI symptoms were measured by only six and 
three items respectively, thus limiting the variability 
of total ADHD symptoms in the sample. It is possible 
that a lack of variance in ADHD HI symptoms (in par-
ticular) could have driven the developmental specific-
ity of AnnoPred PGS and IA symptoms in adolescents, 
but not for HI symptoms. Fourth, we examined corti-
cal and subcortical volumes in our study, in line with 
empirical precedent [38]. However, other brain struc-
tural measures (e.g., cortical thickness, surface area, 
fractional anisotropy) as well as functional measures 
(e.g., regional and network activation) have been stud-
ied in relation to ADHD but were not tested in the cur-
rent study [15, 56, 57, 64]. Future studies may consider 
incorporating other brain measures to test neuroge-
netic mechanisms of ADHD. Fifth, although the cur-
rent study was well-powered and our sample size was 
comparatively larger than many previous structural 
MRI studies of ADHD [18, 65], recent studies suggest 
that it may require several thousands of individuals in 
the sample to detect reliable and robust associations 
between brain volumes and complex behaviors such 
as ADHD symptoms [57, 66]. The smaller effect sizes 
we reported and the lack of statistical significance in 
many hypothesized associations, therefore, should be 
interpreted with some caution. Sixth, PNC is a cross-
sectional study. The absence of repeated measures pre-
cluded our ability to examine whether (or how) genetic 
variants may impact both brain structures and ADHD 
symptomology over time. Finally, our analyses were 
limited to PNC individuals of self-reported European 
ancestry. It has been well documented that PGSs lack 
predictive portability across non-European ancestries 
[35] given that non-European GWA discovery sample 

sizes are comparatively small and underpowered rela-
tive to European sample sizes (e.g., Duncan et al., [67]). 
Additionally, others have noted that trans-ancestral 
PGS predictions may misrepresent the true association 
between genetic risk and a wide range of phenotypes 
[35, 68, 69]. Clearly, more diverse samples are needed 
to better address the growing racial-ethnic disparity in 
psychiatric genetics research.

To conclude, we found a developmentally specific 
direct effect of the AnnoPred ADHD PGS on IA symp-
toms, suggesting the utility of leveraging functional 
annotation information in computations of ADHD 
PGSs. Still, the “average” ADHD PGS explains only 
about 4% of the variance in ADHD outcomes across 
studies, and even less variance in population-based 
cohorts [3]. As GWA study sample sizes continue to 
climb, ADHD PGSs should become more powerful 
predictors over time. Including functional annotation 
information into PGS computations may not only yield 
more powerful prediction signals for ADHD, but it may 
also help to elucidate brain-based biomarkers underly-
ing the genetic risk for ADHD which will be critical for 
the development of novel therapeutics.
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