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a range of cognitive and behavioral phenotypes [1, 3]. In 
fact, sleep problems are often included at least as a sec-
ondary outcome measure as part of clinical trials in a 
variety of single gene disorders and/or as a core feature 
to consider as part of Clinical Global Impression Sever-
ity Scales (CGI-S) [4, 5]. Numerous studies reveal that 
child sleep disturbances in NDDs adversely impact fam-
ily quality of life [6–8]. Sleep problems in NDDs are not 
always related to behavioral sleep hygiene. Indeed, stud-
ies suggest mechanistic contributions to sleep disorders 
in NDDs, and investigations of sleep disturbances in 
animal models of these single gene disorders can offer 
potential clues as to etiology [9], as well as clinical trans-
lational approaches to treatment and mitigation. In this 
review article, we discuss the prevalence and etiology of 
sleep disturbances in two single gene disorders, Rett Syn-
drome, and Angelman Syndrome. We then expand this 
discussion to include more commonly occurring NDDs, 
Down Syndrome, and autism spectrum disorders and 
then discuss strategies for novel methods of assessment 

Background
Sleep disorders are extremely common in neurodevel-
opmental disabilities (NDD) and occur at a significantly 
higher rate as compared to typically developing chil-
dren, adolescents, and adults [1]. Some studies show that 
between 50 and 95% of individuals with NDDs exhibit 
sleep problems [2], with sleep disturbances often emerg-
ing from a very young age and being prevalent through-
out the lifespan [1]. Sleep problems are one of the major 
co-occurring conditions in many NDDs [2], place a large 
burden on children and families, and are associated with 
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Abstract
Sleep disorders are very common across neurodevelopmental disorders and place a large burden on affected 
children, adolescents, and their families. Sleep disturbances seem to involve a complex interplay of genetic, 
neurobiological, and medical/environmental factors in neurodevelopmental disorders. In this review, we discuss 
animal models of sleep problems and characterize their presence in two single gene disorders, Rett Syndrome, and 
Angelman Syndrome and two more commonly occurring neurodevelopmental disorders, Down Syndrome, and 
autism spectrum disorders. We then discuss strategies for novel methods of assessment using wearable sensors 
more broadly for neurodevelopmental disorders in general, including the importance of analytical validation. An 
increased understanding of the mechanistic contributions and potential biomarkers of disordered sleep may offer 
quantifiable targets for interventions that improve overall quality of life for affected individuals and their families.
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more broadly for NDDs in general. Increased under-
standing of the mechanistic contributions and potential 
biomarkers of disordered sleep in these NDDs may offer 
quantifiable targets for interventions that improve over-
all quality of life for affected individuals and their fami-
lies. Specific sleep problems in these NDDs can include 
insomnia, sleep-disordered breathing, disruption to cir-
cadian rhythms, parasomnias, sleep-related movement 
disorder, and/or excessive daytime sleepiness. These 
sleep problems occur to varying degrees across the dif-
ferent disorders presented here and will be discussed in 
more detail within the sections for each disorder. Insom-
nia is defined as persistent difficulty with sleep initiation, 
duration, consolidation, or quality that occurs despite 
adequate opportunity and circumstances for sleep and 
results in daytime impairment [10]. Sleep-disordered 
breathing (SDB) includes a range of respiratory disorders 
such as snoring, sleep-induced hypoxemia, sleep-related 
hypoventilation, upper airway resistance syndrome, 
obstructive sleep apnea (OSA), and/or central sleep 
apnea [10]. Parasomnias include sleep terrors, sleepwalk-
ing, and confusional arousals and can occur during entry 
into sleep, during sleep, or during an arousal from sleep. 
Sleep-related movement disorders are movements that 
impact sleep onset or duration and can include bruxism, 
restless leg syndrome, and restless sleep disorder [11]. 
Disorders of hypersomnolence (narcolepsy) present with 
excessive daytime sleepiness. An overview of these sleep 
problems investigated in clinical studies as well as poten-
tial underlying etiology as investigated within specific 
genetic strains of animal models within these NDDs are 
presented within this review.

Sleep is regulated both by a homeostatic (Process S) and 
a circadian process (Process C) [12]. Together these two 
processes determine most aspects of sleep and related 
variables like sleepiness and alertness. Sleep homeostasis 
refers to the notion that when there is a loss of sleep, it 
elicits a compensatory increase/drive in the intensity and 
duration of sleep. The homeostatic mechanism regulates 
sleep intensity and the depth and maintenance of sleep, 
while the circadian clock regulates the timing of sleep. In 
each of the NDDs discussed in the review, studies from 
animal models suggest that the underlying etiology of 
sleep problems may include homeostatic and/or circa-
dian processes. Circadian rhythms can be investigated by 
exposing mice to light/dark cycles, and sleep homeostasis 
is usually investigated by actively preventing the animal 
from engaging in sleep (despite the desire/drive to sleep). 
The “pacemaker” of the circadian system is located in 
neurons within the suprachiasmatic nucleus (SCN) of 
the hypothalamus, and examination of disruptions to 
homeostasis and circadian rhythms within neurons in the 
SCN has provided insights into potential mechanisms. 
The SCN controls the timing of the sleep-wake cycle and 

coordinates circadian changes in activity across the brain 
and body tissues.

Rett Syndrome
Rett Syndrome (RTT, MIM 312,750) is a severe neuro-
developmental disorder that primarily affects females. 
The prevalence is thought to be around 1:10,000 female 
births (total cases in US ~ 10,000). RTT is caused by 
mutations in the methyl CpG-binding protein 2 gene 
(MECP2) [13] and is associated with loss of function of 
MeCP2. The typical/classic form of RTT is characterized 
by regression, loss of purposeful hand skills and replace-
ment with stereotyped hand movements/hand-wash-
ing motions, limited speech, dyspraxia, and abnormal 
muscle tone [14]. Included in the RTT phenotype are a 
variety of symptoms suggestive of autonomic dysregula-
tion including breathing irregularities (e.g. hyperventi-
lation, apnea, breath holding), heart rate variability, and 
temperature dysregulation [15–17]. Associated features 
include impaired sleep, breathing disturbances, brux-
ism, vasomotor disturbances, abnormal muscle tone, 
diminished response to pain, and scoliosis, among oth-
ers [14, 17]. Sleep problems are highly prevalent in RTT 
[18–20] and are part of the supportive clinical criteria 
[14] with around 80% of the population being affected. 
Recent studies show that sleep difficulties, autonomic 
dysfunction, and milder clinical severity are associated 
with higher levels of anxiety in RTT [21, 22], suggesting 
adverse impacts of sleep problems on mental health as 
well as physical health. Disrupted sleep has a large bur-
den on the health and well-being of both the child and 
caregivers affected by RTT, and clinical management is 
symptomatic, and does not appear to be associated with 
clear improvements [20].

Sleep disturbances in clinical research studies in RTT
Impairments in various aspects of sleep are quite com-
mon in RTT, with a recent study showing that 79–85% of 
caregivers reported their children with RTT experienced 
at least one sleep problem, including frequent nighttime 
waking, screaming spells and/or laughing at night (para-
somnia), sleep-related movement (e.g., bruxism, restless 
legs), or daytime sleepiness [20]. Studies utilizing poly-
somnography (PSG) also show that individuals with RTT 
have increased sleep latency, increased wake after sleep 
onset (WASO), and reduced sleep efficiency [23, 24]. A 
case series of n = 13 participants with RTT also using PSG 
showed increased limb movements during sleep and also 
showed REM sleep is attenuated in RTT [25]. Breathing 
disturbances while awake have been described as alter-
nating hyperpnea followed by apnea [26], which can be 
associated with cyanosis. Findings regarding SDB in RTT 
have been contradictory. Although earlier studies sug-
gested that the breathing disturbances are normalized 
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during sleep [26], more recent studies utilizing PSG show 
that both OSA and central sleep apnea (associated with 
hypoventilation) are common [24, 27] in RTT. A case 
series of n = 11 children with RTT [24] showed that 54.5% 
had OSA in both non rapid eye-movement (NREM) and 
rapid eye movement (REM) sleep which was unrelated to 
their clinical features. This study also revealed hypoxemia 
throughout nocturnal sleep in RTT [24]. Delta power on 
sleep electroencephalography (EEG) is considered a bio-
marker of sleep homeostasis since it is associated with 
sleep intensity and duration. Results from a sleep EEG 
study in RTT showed an increase in delta power during 
slow wave sleep (SWS) and decreased time spent in SWS 
in 2-9-year-old girls with RTT [28]. While delta power 
usually decreases over consecutive slow wave cycles dur-
ing a night of sleep, this pattern was not noted in RTT 
[28], and is suggestive of chronice sleep deprivation [29]. 
In sum, sleep problems affect a majority of individuals 
with RTT, are associated with adverse outcomes in terms 
of mental and physical health, adversely impact caregiver 
quality of life, and the most recent studies suggest that 
sleep disruption, autonomic dysfunction, and anxiety are 
interconnected in RTT [30] and must be considered in 
tandem.

Animal models of sleep problems in RTT
The discovery of the X-linked MECP2 gene, which 
encodes the transcriptional regulator methyl-CpG-
binding protein 2 (MeCP2), as a primary cause of RTT 
allowed for the creation of animal models to study under-
lying pathology and develop new treatments [13]. The 
first models of RTT were male mice with a total knock-
out of the MECP2 gene and complete disruption of the 
MeCP2 protein [31, 32] although there since have been 
other genetic models that model human point muta-
tions, and a truncation mutation [33]. These mouse mod-
els recapitulate many of the features of Rett syndrome 
including stereotypic forelimb motions, uncoordinated 
gait, reduced spontaneous movement, and irregular 
breathing. These animal models serve to cross-validate 
findings from human clinical research studies and vice-
versa. Sleep changes can be assessed in mice by inves-
tigating their activity in cages equipped with running 
wheels and by obtaining EEG recordings during the day/
night cycle (assessing circadian rhythms and homeosta-
sis). In one study, the investigators examined whether 
the circadian system was disrupted in Mecp2−/y mice 
and found a disruption to the circadian clock within 
the SCN such that mutant mice exhibited a decreased 
strength and precision of daily circadian rhythms and 
fragmented sleep [34]. Another study using a different 
genetic strain, the Mecp2tm1.1Bird mouse, found a signifi-
cantly enhanced waking state and shorter duration of 
REM sleep, increased sleep fragmentation, and increased 

sleep inertia that recapitulate sleep problems described 
in RTT patients [35]. The possible mechanistic underpin-
nings of the sleep-wake cycle in RTT might be attribut-
able to MeCP2 binding and transcriptionally activating 
the circadian clock genes, Per1 and Per2 [36], and that 
MeCP2 protein is highly expressed in the suprachias-
matic nucleus (SCN) [37]. More specifically, findings 
from the Mecp2−/y model showed that there was a reduc-
tion of neurons in the SCN expressing vasoactive intesti-
nal peptide (VIP) as well as reduced spontaneous neural 
activity [34]. Circadian disruption was noted in the SCN 
and in peripheral organs, indicating a general disorgani-
zation of the circadian system. Taken together, findings 
from studies of animal models suggest a role for MeCP2 
in the circadian timing system and provide a possible 
mechanistic explanation for the sleep/wake disturbances 
observed in RTT patients. It will be important, however, 
to determine the consistency of these findings across 
different genetic strains of mice. In sum, although stud-
ies in humans and animal models have contributed to a 
broader understanding of potential underlying mecha-
nisms of sleep disturbances in RTT, further research is 
needed to investigate the molecular, neuronal, and non-
neuronal pathways underlying sleep disorders.

Angelman syndrome
Angelman syndrome (AS) is a neurodevelopmental dis-
order affecting both females and males, with an esti-
mated prevalence of around 1:15,000. AS is caused by 
the loss of function of the maternally expressed Ubiqui-
tin-protein ligase E3A (UBE3A). Most cases (70%) of AS 
are caused by a deletion in the maternal copy of chromo-
some 15q11.2-q13. Other forms of AS are attributable to 
paternal uniparental disomy (3% of cases), an imprinting 
center defect (6% of cases), a mutation in the maternally 
inherited allele of UBE3A (11% of cases) [38]. The phe-
notype, present from birth, is characterized by absent or 
minimal spoken language, gait abnormalities, epilepsy, a 
happy/excitable personality, and abnormal movements 
[39]. Features of autism are also prominent within AS 
[40, 41]. Although phenotypic features vary depending 
upon the molecular subtype of AS [42], sleep problems 
are present in up to 80% of individuals with AS [43] and 
have not differed by molecular subtype [44]. Within the 
consensus guidelines for AS, abnormal sleep-wake cycles 
and diminished need for sleep are considered associated 
features [43]. Sleep problems are a major contributor to 
parental/caregiver stress in AS [45–47].

Sleep disturbances in clinical research studies in AS
Most clinical research studies of sleep problems in AS 
have involved parent/caregiver questionnaires, although 
some more recent studies have utilized PSG and actig-
raphy. Although sleep problems seem to be worse in 
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younger children, being most prevalent between the ages 
of 2–9 years [48, 49], several studies suggest that a sig-
nificant percentage of individuals with AS exhibit sleep 
problems that persist into adolescence and adulthood. 
Sleep problems are pervasive enough and adversely 
impact caregiver quality of life enough in AS to be 
included in a clinician-reported and a caregiver-reported 
outcome assessment scale that is being utilized in current 
clinical trials [50]. Seizures are very common in AS, and a 
high percentage of those with AS who have epilepsy (79% 
in one study) also have sleep problems, with the sever-
ity of seizures correlating with sleep disturbances [51]. 
Seizures disrupt sleep architecture, fragment sleep, and 
can decrease REM sleep [49]. Results from questionnaire 
studies show that between 35 and 60% of individuals with 
AS have difficulty initiating sleep and/or maintaining 
sleep [48, 52, 53]. Night wakings are very common in AS 
and may be accompanied by behaviors such as scream-
ing [48]. Other salient findings from sleep questionnaire 
studies in AS include snoring, sleep terrors, sleepwalking, 
sleep fragmentation, nocturnal hyperkinesia, nocturnal 
laughing, and a reduced need for sleep [46, 48, 52, 53]. 
Some reports also suggest that individuals with AS only 
sleep 5–6  h/night and do not have daytime sleepiness 
even with fragmented and/or reduced night-time sleep 
[52]. PSG is very challenging in AS, and, as such, stud-
ies to date consist of smaller sample sizes (e.g., n = 10). 
Results from PSG studies suggest increased sleep latency 
due to difficulties with settling, decreased total sleep 
time, reduced sleep efficiency, and reduced percentage 
of slow wave sleep [54, 55]. In addition, these studies 
showed that the percentage and duration of REM sleep 
was significantly lower, and the percentage of slow wave 
sleep was significantly higher [54, 55]. Sleep EEG coher-
ence is a measure of the brain’s connectivity during sleep, 
and it is assessed by examining interactions between 
adjacent brain regions (short-range) and between more 
distant regions (long-range). Gamma band coherence is 
usually lower during sleep, and increases suggest atten-
tive wakefulness and tend to occur during REM sleep. In 
AS, a recent retrospective study of n = 28 children (ages 
4–11 years) found increased long-range EEG coherence 
in the gamma band during sleep and decreased sleep 
spindle number and duration [56] which could have a role 
in neuronal plasticity as well as implications for memory 
and learning [57, 58]. To summarize, sleep problems are 
pervasive in AS and are often associated with epilepsy 
and increased behavioral challenges and adversely impact 
quality of life for affected individuals and their caregivers.

Animal models of sleep problems in AS
The most commonly used mouse model of AS recapitu-
lates many phenotypic features observed in AS patients 
[38] including epilepsy, motor deficits, abnormal EEG, 

abnormal sleep patterns, increased anxiety, and repetitive 
behaviors. This model has been valuable for understand-
ing disease processes in AS and in identifying appropri-
ate drug targets [59]. Two studies in AS mice evaluated 
changes in the sleep-wake cycle [60, 61]. In one study 
[61], they found that circadian rhythms are intact, but 
abnormal sleep patterns arise from a deficit in accumula-
tion of sleep drive (i.e. disruption to sleep homeostasis). 
In this study, they also determined that Ube3a protein 
was present in many neurons of the SCN, suggesting that 
it acts as a novel genetic regulator of sleep homeostasis. 
In contrast, in a different study Shi et al., 2015 showed 
alterations to circadian rhythms where they showed 
a longer circadian period that leads to delayed phase 
[60], which they hypothesize could account for the dif-
ficulty with settling to sleep (sleep onset latency) and 
shorter sleep duration in individuals with AS. These dif-
ferent findings suggest the importance of continuing to 
investigate how UBE3A affects sleep patterns in animal 
models, and differences in genetic backgrounds/strains 
could account for these differences. Although there are 
still gaps in understanding the mechanistic basis of sleep 
problems in AS, it is important to note that in dele-
tion forms of AS, there is a disruption in the gene that 
encodes for the B3 subunit of the gamma-aminobutyric 
acid–mediated (GABA) receptor, and alterations to this 
receptor may cause inhibitory influences on thalamocor-
tical interactions that could be responsible for the sleep 
problems in AS [49]. In homozygous Gabrb3-knockout 
mice (one of the models used to assist with studying 
AS), studies of reciprocal inhibitory connections dem-
onstrated abolition of GABA-mediated inhibition in 
the thalamic reticular nucleus as well as an increase in 
oscillatory synchrony [62]. Excitingly, recent therapeutic 
advances in AS pre-clinical studies show that treatment 
with an antisense oligonucleotide (ASO) rescues abnor-
mal EEG rhythms and sleep disturbances [63]. Since 
these compounds have started to advance to human 
clinical trials, it will be important to determine whether 
some of the sleep disturbances in AS are normalized in 
human clinical studies as well. In sum, sleep is signifi-
cantly disrupted in AS but contributions to sleep disrup-
tion are likely multi-faceted and require further study to 
determine the underlying pathophysiology. Despite this, 
recent advances in therapeutic development suggest that 
normalization of at least some of the sleep disturbances 
could be possible with novel compounds.

Down syndrome
Down Syndrome (DS) is the most common genetic cause 
of NDD but is very complex genetically, with potentially 
more than 500 genes that could be overexpressed on 
chromosome 21. There are several significant medical co-
occurring conditions in DS including: congenital heart 
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disease, hypothyroidism, feeding problems and gastroin-
testinal issues [64], and obesity. Obesity in DS starts to 
become a concern between the ages of 4–5 years [65, 66], 
and this is the age when parents also begin to become 
increasingly concerned about challenging behaviors [67]. 
Individuals with obesity and DS are more likely to also 
have obstructive sleep apnea (OSA) [66].

Sleep disturbances in clinical research studies in DS
Studies that have utilized parental questionnaires and 
those that have conducted patient EEG recordings con-
sistently show sleep architecture to be altered in children 
in DS with alterations consisting of reduced time spent in 
NREM sleep, increased sleep latency, and increased night 
wakings [68, 69]. A study utilizing actigraphy, sleep dia-
ries, and PSG showed that children with DS were averag-
ing 6.9 to 7.9 h of sleep, with poor sleep efficiency [70]. 
Studies have suggested 50 to 79% of children with Down 
syndrome have OSA compared to 1–4% of the rest of the 
population [71]. Sleep problems in DS can start from a 
very young age but are prevalent throughout the lifespan 
with studies also showing that 78 to 90% of adults with DS 
have OSA [72]. Increased prevalence of OSA in DS could 
be attributable to anatomic differences such as hypoto-
nia, macroglossia, and midface hypoplasia [71]. In addi-
tion, many children with DS have enlarged adenoids and 
tonsils, which also cause obstruction within the already 
narrowed airway [73]. Importantly, while adenotonsillec-
tomy (AT) is considered first-line therapy for the treat-
ment of pediatric OSA, persistent OSA after AT occurs 
in many (58%) with DS [74, 75] requiring more intensive 
follow-up. OSA in DS is associated with a range of medi-
cal, cognitive, and behavioral outcomes such as lower 
verbal IQ [76], Attention-Deficit/Hyperactivity Disorder 
(ADHD) [77–79], and impaired autonomic/cardiovas-
cular control [80]. A recent study showed that children 
with DS had elevated heart rate during N2 (NREM) and 
N3 (NREM) sleep as compared to typically developing 
children and did not exhibit the typical fall in heart rate 
from wake to sleep [80]. A study in middle-aged adults 
with DS shows that more disrupted sleep is associated 
with lower white matter integrity, increasing the risk of 
Alzheimer’s disease [81]. Individuals with DS frequently 
exhibit an abnormal PSG, with high sleep fragmentation, 
manifested by frequent awakenings and arousals, con-
siderable limb movement [82], and frequent OSA [83]. 
Children with DS often require repeated PSG because of 
continued difficulties with sleep problems (e.g., even after 
AT) and/or a resurgence of sleep problems during ado-
lescence [71] that coincides with puberty and the onset of 
obesity. In sum, sleep problems are extremely prevalent 
in DS, with most individuals having OSA, and this has a 
significant long-term impact on overall functioning, as 

well as the quality of life for individuals with DS as well as 
their families.

Animal models of sleep problems in DS
In contrast to RTT and AS, the development of animal 
models to study the underlying pathophysiology of DS 
and to develop and test potential therapies has been 
more challenging, in part because no model has captured 
all of the triplicated region. Animal models that have 
been developed for DS involve transgenic overexpression 
of single genes or larger human genomic segments and 
creation of mouse models carrying a partial triplication 
in regions of MMU16 syntenic to human chromosome 21 
(segmental trisomy models or Ts). Among these models, 
to date, the Ts65Dn is mostly commonly used in research 
because it contains triplications of partially overlapping 
segments in the critical DS region and cover most of 
the region triplicated in humans [84]. Ts65Dn has also 
formed the basis of pre-clinical justification for clinical 
trials [85]. These mice recapitulate some of the phenotype 
in DS including intellectual disability (ID), hyperactivity, 
craniofacial malformations, and motor dysfunction [86]. 
The Tc1 (transchromosomic, Tc(Hsa21)1TybEmcf) line is 
a trans-species aneuploid line expressing a large portion 
of Hsa21 (83%, 269 genes) as a third copy. Most studies 
suggest no alterations in circadian rhythms for Ts65Dn 
animals. The mice do, however, exhibit sleep fragmenta-
tion and have OSA in REM sleep [87]. Tc1 mice exhibit 
moderate disruptions in rest/activity patterns and hyper-
active episodes, with circadian rhythms also appearing 
similarly unaffected [88]. EEG signals have also been 
obtained in several mouse models of DS. Findings have 
differed, depending upon the mouse strain being stud-
ied. In one study using the Ts65Dn mouse, investiga-
tors found increased waking periods at the expense of 
non-REM sleep, increased power in theta waves during 
sleep, and a delayed sleep rebound after sleep deprivation 
[89]. In contrast, TC1 mice had limited sleep and EEG 
abnormalities, showing only a delayed sleep rebound 
after sleep deprivation and no difference in the power of 
theta oscillations [89]. Unlike RTT and AS, the poten-
tial molecular mechanisms underlying sleep problems in 
DS are less well-understood. Because of the challenges 
inherent with animal models of DS with regard to trans-
lational research, including that a clinical trial was halted 
in phase 2 because of failure to recapitulate pre-clinical 
findings from findings with the Ts65DS model, a newer 
mouse model of DS has been created, the TcMAC21 [90]. 
These mice have many of the same phenotypic features 
of DS that are evident in humans, including a distinct 
facial structure, a greater prevalence for congenital heart 
defects, a smaller-than-usual cerebellum and learning 
difficulties [90]. To date, sleep has yet to be studied in this 
newer model. It will therefore be important to continue 
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to investigate sleep abnormalities in animal models of 
DS, to develop further treatment and interventions.

Autism
Autism spectrum disorder (ASD) now affects approxi-
mately 1 in 36 children and is around 3.8 times as preva-
lent among boys as among girls [91]. A small percentage 
of individuals with ASD have a known genetic etiology, 
typically in the form of rare variants, while most cases are 
idiopathic. ASD is characterized by impairments in social 
communication, accompanied by restricted/repetitive 
interests and behaviors. ASD is very heterogeneous in 
terms of phenotypic presentation and functional abilities, 
especially compared to AS, RTT, and DS. It is important 
to note, however, that a proportion of individuals with 
RTT, AS, and DS also meet criteria for ASD, and there 
are potential overlapping pathways [40, 41, 66, 92, 93]. 
In addition, those with co-occurring diagnoses of autism 
often exhibit higher levels of impairment, and one recent 
study in DS showed that those individuals who had both 
DS and ASD had more negative effects on sleep archi-
tecture. Most of the animal models for ASD to date have 
therefore been developed using single gene disorders 
[94]. This approach has allowed for the potential study 
of shared phenotypes, inclusive of sleep problems and 
underlying cellular and molecular pathways [95], and the 
knowledge gleaned from single gene disorders has appli-
cability to ASD.

Sleep disturbances in clinical research studies in ASD
Studies of parent-reported sleep problems of ASD reveal 
prevalence rates ranging between 40 and 80% [1, 96–98]. 
The most common problems that are reported include 
difficulties with initiating and maintaining sleep, fre-
quent and prolonged night awakenings, early morning 
waking, and irregular-sleep wake schedules [99–102]. 
Reduced total sleep time, increased daytime sleepiness, 
and night-time laughing and/or talking are also common 
[97, 99, 100, 102]. Sleep problems for individuals with 
ASD can persist through adulthood [103], and one study 
found that adults with ASD had lower sleep efficiency 
as compared to neurotypical adults. Studies using PSG 
have shown increased nightwakings, reduced total sleep 
time, lower sleep efficiency, reductions in REM and non-
REM sleep, and longer latency to fall asleep [99, 104]. An 
increased incidence of sleep problems in those with ASD 
has been associated with more behavioral difficulties 
(e.g., aggression, self-injury, anxiety, hyperactivity, irrita-
bility, and inattention) [105, 106], increased sensory sen-
sitivity [107, 108], more pronounced repetitive behaviors, 
and more impairments in social communication [109]. 
As with the other NDDs discussed here, higher rates of 
sleep problems in ASD are associated with higher rates of 
caregiver burden and family stress [105, 110].

Etiology of sleep problems in ASD
The underlying etiology of sleep problems in ASD is 
multifaceted, with possible contributions of neurobio-
logical factors, as well as medical and behavioral fac-
tors. Although ASD is genetically heterogeneous, there is 
emerging evidence that neurotransmitters that regulate 
sleep and wake cycles such as serotonin, and the hor-
mone, melatonin could contribute to sleep problems in 
ASD in a subset of individuals. Melatonin is produced 
by the pineal gland and regulates sleep/wake cycles in 
humans. Some studies show decreased levels of melato-
nin in serum, saliva, and/or urine in children and adoles-
cents with ASD [111, 112]. This reduction in melatonin 
is thought to be associated with a variation in a gene 
associated with the serotonin-melatonin synthesis path-
way, the acetyl serotonin O-methyltransferase (ASMT) 
gene [111, 113]. ASMT converts serotonin into melatonin 
[114] and genetic variants within the promotor region are 
more frequent in individuals with ASD and are associ-
ated with a decrease in the number of ASMT transcripts 
[111, 115–117], although this impacts a very small subset 
of individuals. In addition, some studies suggest altera-
tions of the serotonergic signaling system are involved in 
the pathophysiology of ASD, at least in some individu-
als [118–120]. One study showed that 40% of individu-
als with ASD had abnormally high levels of serotonin in 
blood and 51% had abnormally low levels of melatonin 
[113], with other work documenting normal overnight 
blood or evening salivary melatonin levels [103, 121]. 
These studies consisted of small sample sizes and may not 
be generalizable given the way samples were collected 
(in dim light or not). Additionally, studies have shown 
that supplementation with melatonin can be effective in 
treating sleep problems in some (53.7% in a recent ran-
domized control trial) [122], but not all individuals with 
ASD, especially those with night wakings or short sleep 
duration [103, 123]. Prolonged release melatonin can be 
helpful for night wakings and short sleep duration, but 
requires swallowing a pill whole, without it being crushed 
(to maintain the prolonged release packaging). Given 
the inconsistency of responses to medications such as 
melatonin and the heterogeneity within ASD, behavioral 
strategies are typically recommended as first-line inter-
ventions and focus of treatment [100].

Medical/behavioral/environmental contributions to sleep 
problems in NDDs
Beyond the neurobiological contributions to sleep prob-
lems that have been described for each of the condi-
tions reviewed here (RTT, AS, DS, ASD), there are also 
potential medical, behavioral, and/or environmental 
contributions to sleep difficulties. Gastrointestinal issues 
such as constipation and reflux are very common across 
all of these NDDs, and many individuals with NDDs are 
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not able to verbally express their discomfort, which can 
exacerbate sleep problems in particular. For example, 
constipation can lead to abdominal cramping, which can 
interfere with a proper night’s sleep. Gastroesophageal 
reflux may be worsened by lying down at night and could 
be reflected in an increased latency to falling asleep/bed-
time resistance. Sleep dysfunction is also very common 
in those with NDDs who have epilepsy [124]. Epilepsy 
disrupts sleep, and sleep disturbances can also lower the 
seizure threshold [8]. Sleep disruption is also a common 
side effect of many medications used to treat co-occur-
ring conditions across all of these NDDs (anxiety, irri-
tability, epilepsy, ADHD, etc.). Some medications have 
properties that contribute to difficulties with sleep onset 
and/or sleep maintenance. Selective serotonin reuptake 
inhibitors (SSRIs), for example, can disrupt sleep conti-
nuity, and/or decrease total sleep time, increase wake 
time, and increase stage N1 sleep [125, 126]. Some medi-
cations for epilepsy (clonazepam, felbamate, lamotrigine, 
oxcarbazepine, and phenobarbital) can worsen sleep 
[127]. Stimulants that are used to treat ADHD often have 
insomnia as a side-effect and, if given too late in the day, 
they can interfere with sleep-onset latency.

Novel methods of assessment of sleep problems
Polysomnography (PSG) is considered the gold standard 
in sleep research [8], but is resource and cost intensive. 
PSG is also limited as an outcome measure by the foreign 
and stressful environment of a sleep lab, the need for spe-
cialized personnel, and short interval of assessment. As 
such, current strategies for assessing sleep as an outcome 
in clinical trials of NDDs are often limited to caregiver 
completed questionnaires [8] and sleep diaries [128, 129]. 
While these strategies are widely used for studying sleep 
in a variety of neurodevelopmental disorders, they rely 
on caregiver reporting and thus are subject to multiple 
forms of bias including recall as well as observer bias. For 
example, the time of sleep onset may be mis-reported in 
a sleep diary if a child’s eye-closure and silence while still 
awake is misinterpreted as being asleep. Night-wakings 
[3] could be easily missed when relying on sleep ques-
tionnaires and/or diaries. In addition, self-reporting 
of sleep problems is not possible in many NDDs, given 
the severe communication impairment. There are weak 
correlations between parental reports of sleep and PSG 
in some NDDs [70], and a recent study of children with 
DS also showed that parents cannot accurately predict 
when their child has apnea [130]. Thus, it is important 
to validate other objective methods of assessing sleep 
that are less invasive and burdensome, and that are cost 
effective. In recent years, wearable sensors have become 
smaller, lighter, cheaper, and less obtrusive, and are being 
increasingly utilized in sleep research studies because of 
their sensitivity and ease of use, which have made them 

suitable for longitudinal monitoring of patients within 
their home environment.

Actigraphy devices are worn on the wrist and can esti-
mate sleep parameters by assessing movement during 
sleep. Actigraphy, which does not capture physiological 
parameters, may not be sufficient to detect sleep prob-
lems and differentiate between sleep stages in lieu of 
PSG in some NDDs [70, 131]. Newer generation sensors 
that utilize photoplethysmography (PPG), which uses 
an infrared light to measure the volumetric variations of 
blood circulation, along with actigraphy tend to be more 
accurate with detecting wake times [132]. Some wearable 
devices also have the capacity to capture oxygen satura-
tion (SpO2), and the addition of pulse oximetry (which 
captures SpO2) permits an assessment of hypoxemia 
and more closely approximates what is captured during 
gold-standard PSG. These tend to be finger-worn devices 
(vs. wrist-worn) and could have important implications/
use cases for NDDs such as RTT and DS, where apneas 
and OSA are more common. Some wearable devices 
that include PPG and also capture electrodermal activ-
ity (EDA), skin temperature, and heart rate variability 
are being used to study stress/behavioral responses (e.g., 
anxiety) in NDDs such as ASD.

Given the concordance of sleep problems, autonomic 
dysfunction, and behavioral difficulties across many 
NDDs, actigraphy devices may be quite useful, especially 
given the challenges associated with self-report and reli-
ance on caregiver reporting. Since sensory processing 
issues are prevalent in NDDs [133], and studies have 
shown that sensory sensitivities can make it challeng-
ing for children to be compliant with wearable sensors 
[134], it is important to directly test the feasibility of use 
of these wearable sensors in NDD populations. Position-
ing could have an impact on data quality (wrist vs. finger 
worn), and, in some cases for example, if a participant is 
likely to exhibit mouthing of objects, a finger-worn device 
might need to be placed after the participant is already 
settled in bed. “Nearable” devices passively monitor par-
ticipants within their home environment, and therefore 
do not require a participant to wear anything. An ongo-
ing study in RTT is using a “nearbale” device to monitor 
respiration, sleep quality, and sleep stages although it is 
not yet known how measurements compare to gold-stan-
dard PSG.

Actigraphy scoring algorithms that have been devel-
oped with typical populations (e.g., Cole-Kripke, Sadeh) 
[135–137] have limitations when applied to those with 
NDDs in that they can vary across devices and might 
underestimate sleep onset latency and overestimate 
sleep duration [134, 138]. To assist, recent advances in 
machine learning and artificial intelligence (AI) have 
allowed for the development of models using both move-
ment and physiological data from wearable sensors to 
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predict sleep problems, differentiate sleep stages, and 
even to detect OSA [139, 140−142]. Although most cur-
rent work is based on typically developing adults and 
has yet to be applied to children with NDDs, we recently 
demonstrated the utility of a machine-learning approach 
in RTT that combined actigraphy with physiological 
parameters to create a model that aligned well with PSG 
[131]. There are also remote assessment devices for OSA. 
A recent study examined the feasibility and accuracy of 
Level 2 home sleep apnea testing (HSAT) in children, 
adolescents, and adults with DS and found that Level 2 
HSAT was well-tolerated, preferred by parents/caregivers 
as compared to PSG, and had good accuracy for detect-
ing moderate-severe OSA [143]. This has yet to be tested 
more broadly in other NDDs.

Given the differences in aspects of sleep in the NDDs 
we discussed here as compared to typical populations as 
well as their sensory sensitivities, it is important to deter-
mine: (1) the utility of use of wearable sensors to assess 
both movement and physiological signals in NDDs, and 
(2) the degree to which these signals accurately predict 
sleep problems and OSA or other apnea episodes. It will 
be very important to take a stepwise approach for ana-
lytical validation [144] to determine the accuracy, pre-
diction, and reliability of measurements in NDDs from 
wearable sensors before they can be used more broadly. 
Also, data sharing approaches (e.g., some companies 
allow open sourcing of data) across other intellectual and 
developmental disabilities research centers can further 
propel the use of wearable sensors and help determine 
the best use cases and parameters for analyses as well as 
clinical validation across NDDs. It will also be important 
to consider the cost per use for each wearable device and 
whether the device is reusable or disposable, especially 
since certain wearable and nearable devices are cost 
prohibitive for use in larger scaled studies such as clini-
cal trials. Related to this, it is important to consider bat-
tery life for potential collection of sleep data over several 
days since up to seven days of data are recommended, for 
example, for determining total sleep time and sleep effi-
ciency [145]. Finally, researchers should consider whether 
they will have access to raw data to develop novel algo-
rithms, which is very important for the study of NDDs, 
as well as options for available data storage, and potential 
privacy concerns.

Summary and conclusions
Sleep is very commonly disrupted in intellectual and 
developmental disabilities and these disruptions not only 
place a large burden on caregivers, but also adversely 
impact the quality of life of individuals with NDDs them-
selves. The advantage of studying sleep in single gene 
disorders is that it has high clinical translational value 
given the common methodologies that can be utilized 

across human and animal model studies to bridge gaps 
in mechanistic understanding that can lead to improved 
treatments and interventions. These disease models allow 
for the understanding of neural circuits that contribute to 
sleep disruption. For more commonly occurring NDDs 
such as DS and ASD, there is a need for refinement of 
animal models to better characterize the underlying 
pathophysiology that contributes to sleep problems. In 
addition, however, within clinical research studies, defin-
ing and separating subsets of individuals within each 
NDD with similar functional levels, similar mutations/
genetic subtypes, and/or similar co-occurring medical/
behavioral conditions can also lead to enhanced insights 
for more targeted interventions and treatment. The use of 
PSG, sleep diaries, and standardized sleep questionnaires 
will continue to have high utility in clinical research stud-
ies and in clinical trials with NDDs, however, emerging 
studies are also showing that wearable sensors offer a way 
to objectively measure sleep in NDDs in the home/natu-
ralistic environment that reduces caregiver burden. These 
methods can help develop a novel data collection format 
and determine when PSG is needed, determine what sig-
nal parameters are most essential resulting in the best 
model fit vs. PSG, and whether wearable sensors could 
be used in future clinical trials. The use of wearable and 
nearable sensors could also allow for larger scaled studies 
which could provide additional insights into sleep prob-
lems and targeted treatments for each of these NDDs 
since many current studies have more limited generaliz-
ability given the relatively small sample sizes. The use of 
wearble devices could also result in the need for fewer 
PSG’s, could reduce caregiver burden, and could assist in 
formulating clinical interventions and tracking improve-
ment over time.
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