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Abstract 

Background Common genetic variation has been shown to account for a large proportion of ASD heritability. 
Polygenic scores generated for autism spectrum disorder (ASD‑PGS) using the most recent discovery data, however, 
explain less variance than expected, despite reporting significant associations with ASD and other ASD‑related traits. 
Here, we investigate the extent to which information loss on the target study genome‑wide microarray weakens 
the predictive power of the ASD‑PGS.

Methods We studied genotype data from three cohorts of individuals with high familial liability for ASD: The Early 
Autism Risk Longitudinal Investigation (EARLI), Markers of Autism Risk in Babies‑Learning Early Signs (MARBLES), 
and the Infant Brain Imaging Study (IBIS), and one population‑based sample, Study to Explore Early Development 
Phase I (SEED I). Individuals were genotyped on different microarrays ranging from 1 to 5 million sites. Cover‑
age of the top 88 genome‑wide suggestive variants implicated in the discovery was evaluated in all four studies 
before quality control (QC), after QC, and after imputation. We then created a novel method to assess coverage 
on the resulting ASD‑PGS by correlating a PGS informed by a comprehensive list of variants to a PGS informed 
with only the available variants.

Results Prior to imputations, None of the four cohorts directly or indirectly covered all 88 variants among the meas‑
ured genotype data. After imputation, the two cohorts genotyped on 5‑million arrays reached full coverage. Analysis 
of our novel metric showed generally high genome‑wide coverage across all four studies, but a greater number 
of SNPs informing the ASD‑PGS did not result in improved coverage according to our metric.

Limitations.

The studies we analyzed contained modest sample sizes. Our analyses included microarrays with more than 1‑mil‑
lion sites, so smaller arrays such as Global Diversity and the PsychArray were not included. Our PGS metric for ASD 
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Background
PolyGenic Scores (PGS) are potentially useful tools for 
research and prediction [1, 2], but require additional 
development before their utility can be fully realized [3]. 
PGS are weighted sums of risk alleles that are computed 
using genotype data from individuals in a select target 
sample. The list of genetic variants to be summed and 
attendant effect sizes that serve as weights are identified 
in large-scale, genome-wide discovery studies. PGS rep-
resent an individual’s genetic loading for a given trait, and 
although they are not expected to be sufficiently predic-
tive for psychiatric and mental health outcomes on their 
own [4], they are likely to serve in the future as an essen-
tial component of risk modeling that guides clinical deci-
sion making for preventive strategies or post-diagnostic 
treatment.

Several factors limit the potential utility of the PGS 
by either directly or indirectly influencing the extent to 
which the PGS captures the true genetic susceptibility. 
Some of these factors are not easily addressed. Lack of 
generalizability between discovery and target samples, 
for example, will require data collection in diverse ances-
tries around the world [5, 6]. Also, the sample size or 
phenotypic measurement employed in current discovery 
studies may result in power loss reflecting incomplete-
ness of variant identification and imprecision of effect 
sizes to serve as weights in the PGS [7]. Regardless of 
the completeness of discovery, when applying discovery 
results to target genotypes, the incomplete overlap of the 
discovery variant list and target genotyping array data 
can also lead to information loss when computing PGS. 
Specifically, the genotyping array used in the target sam-
ple is likely to lack some portion of the index discovery 
variants, and this will differ by array. Even if correlated, 
proxy variants are available as substitutes for the index 
variant, there is still some expected loss of PGS signal. It 
is often assumed that genotype imputation can recoup 
the lost information from unrepresented polymorphisms 
[8]. However, if no index or proxy genetic variants can be 
imputed with high quality, information loss will occur. 
Collectively, this lack of discovery representation in the 
genetic variants in the target sample could lead to a lower 
observed variance explained compared to the initial PGS 

 R2 metric often reported as part of the large discovery 
GWAS effort [9].

PGS for numerous psychiatric traits have been devel-
oped and have both global and unique considerations for 
their use and development. This project focuses on a PGS 
for Autism Spectrum Disorder (ASD). ASD is a neurode-
velopmental disability characterized by social interaction 
and social communication deficits, and restrictive, repet-
itive patterns in behaviors, interests, or activities [10]. 
The heritability for common genetic variation is substan-
tial and was estimated to be about 50% [11]. A PGS for 
ASD (ASD-PGS) could assist in the early detection of 
infants or toddlers displaying early symptoms. ASD-PGS, 
if accurate in the prediction of later abilities and chal-
lenges among diagnosed children, could also be used to 
inform parents and guide decisions about more specific 
and individualized supports and services.

To inform the ASD-PGS, the most recent discov-
ery effort by Grove et  al. (2019) identified common 
genetic susceptibility variants predisposing to ASD and 
was accomplished via genome-wide association study 
(GWAS) in combined samples from the Psychiatric 
Genomic Consortia (PGC) and the Danish Lundbeck 
Foundation Initiative for Integrative Psychiatric Research 
(iPSYCH) studies [12]. This scan successfully identified 
three independent loci and then attempted to replicate 
the findings for the top 88 variants using meta-analysis 
of five follow up studies conducted in Northern Euro-
pean populations. In addition to the top 88 GWAS hits, 
the Grove et al. study evaluated the predictive ability of 
ASD-PGS. While confirming that common genetic pre-
diction is not currently clinically useful [1], the ASD-PGS 
was observed to explain 2.8% of variance in the trait [12], 
the SNP-based heritability, representing the potential of 
polygenic prediction with sufficient discovery sample 
size, was estimated at 11% [13].

A number of recent studies have used the Grove et al. 
discovery information to derive ASD-PGS and found 
statistically significant associations with ASD [14–17] 
and other ASD-related traits [18–20]. However, when 
reported, variance explained is well below the value esti-
mated in Grove et al. (2019) and measures of the strength 
of association are modest or null. The failure to achieve 

is only generalizable to samples of European ancestries, though the coverage metric can be computed for traits 
that have sufficiently large‑sized discovery findings in other ancestries.

Conclusions We show that commonly used genotyping microarrays have incomplete coverage for common ASD 
variants, and imputation cannot always recover lost information. Our novel metric provides an intuitive approach 
to reporting information loss in PGS and an alternative to reporting the total number of SNPs included in the PGS. 
While applied only to ASD here, this metric can easily be used with other traits.
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the full predictive power of the ASD-PGS can be attrib-
uted to small target sample size and lack of generaliz-
ability of the target population to the discovery study. 
The incomplete coverage of independent loci that were 
discovered due to lack of adequate representation on the 
target study genome-wide microarray, however, is a spe-
cific cause that can be empirically characterized.

In this project, we evaluate the presence or absence 
of the 88 previously identified variants that were car-
ried forward for replication in Grove et  al. on standard 
microarrays before quality control (QC), after QC and 
post-imputation. To accomplish this, we use genome-
wide data from three studies of familial ASD and one 
population-based case–control study. Collectively, these 
studies used a diversity of microarrays spanning approxi-
mately one million to more than five million sites. We 
then expand our evaluation of coverage in each study to 
a genome-wide PGS approach using a novel method and 
report on our findings.

Methods
Familial ASD studies
Individuals included in our analyses were participants in 
one of three studies of high familial likelihood for ASD. 
These studies were designed to investigate the early life 
factors involved in ASD and neurodevelopmental out-
comes by enrolling mothers who had already given birth 
to a previous child with a clinical ASD diagnosis. The 
Early Autism Risk Longitudinal Investigation (EARLI) 
Study [21] and Markers of Autism Risk in Babies-Learn-
ing Early Signs (MARBLES) [22] both enrolled mothers 
who already had a child with ASD to participate when 
they became pregnant with another child and followed 
them throughout pregnancy until 36 months of age. We 
also included participants from the Infant Brain Imaging 
Study (IBIS), [23–25] which enrolled these high likeli-
hood mothers and infants at 6 months and were then re-
evaluated at 12 and 24 months of age.

Population‑based study to explore early development 
phase I
A total of 3,769 children were enrolled in the Study to 
Explore Early Development, Phase 1 (SEED 1), a multisite 
cohort initiative designed to obtain a representative sam-
ple of ASD and typically developing preschool-aged chil-
dren in the US. Children between 2 and 5 years old, born 
between September 1, 2003, and August 31, 2005, and 
living in one of six study site vicinities (San Francisco Bay 
Area, Philadelphia metropolitan area, northeast Mary-
land, central North Carolina, and the Atlanta metropoli-
tan area) were ascertained through a variety of methods, 
including diagnostic clinics, organizations providing 
evaluation or services for children with developmental 

problems, educational departments, and population vital 
records. Detailed recruitment procedures are described 
elsewhere [26].

Genetic data
Cleaning and imputation
Samples from familial ASD cohorts were genotyped using 
the MEGA 1-Million (M)(MARBLES) and 5 M Illumina 
(EARLI and IBIS) chips. The Multi-Ethnic Global Array 
(MEGA) is a high-density array consisting of more than 
1.7 million single nucleotide polymorphisms (SNPs) and 
is designed to represent diverse ancestries. The 5 M array 
is more comprehensive, consisting of around 5-million 
high-density SNPs, and has high overlap with the 1  M 
array. The SEED samples were genotyped on the more 
recently available Global Screening Array (GSA), which 
contains 640 K variants and represents diverse ancestry. 
For all studies, whole blood or buccal tissue was collected 
and samples were processed and stored. Genotyping was 
performed at the Johns Hopkins Genetic Resources Core 
Facility (GRCF).

The resulting genotypes were then subject to quality 
control filters according to standard criteria [27]. Briefly, 
using PLINK v1.9 [28], individuals failing QC checks for 
sex, relatedness, sample call rate of 0.03 (using –miss-
ing), and divergent ancestry were removed. SNPs were 
also removed based on the following criteria: MAF ≥ 0.05 
among European samples, missing call rates exceeding 
0.05, and Hardy–Weinberg equilibrium exact test p-value 
below 0.00001 among European samples.

Following cleaning, studies were imputed on the Mich-
igan Imputation Server using the Minimac4 pipeline 
provided by the University of Michigan. We specified 
the 1000 genomes project (1000G) Phase 3 v5 reference 
panel, hg19 array build, Eagle v2.4 phasing [29], and the 
quality control and imputation mode. We imputed each 
target study separately and included 2504 1000G samples 
along with the target samples surviving QC. Post-impu-
tation, we required imputed SNPs to correlate with the 
true unobserved genotypes at an r-squared  (R2) > 0.80.

Genetic ancestry classification
After applying both the variant and sample level fil-
ters, measured genotypes were used to compute genetic 
ancestry variables from principal components analysis in 
Eigensoft [30] according to a recommended procedure 
[27], which includes pooling the target samples with the 
2504 1000G samples from diverse ancestral groups [31].

Classification to a defined ancestral group was carried 
out using K-means (R v4.0.3 with “kmeans” function) 
based on the first 2 principal components (PC1 and PC2) 
resultant from this procedure. Only the 661 African, 504 
East Asian, and 503 European samples from 1000G were 
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used as anchors to define three ancestral clusters. The 
minimum, maximum and standard deviation of PC1 and 
PC2 for each of the three 1000G ancestry groups were 
computed. Target sample principal components were 
then compared to these values to classify into an ances-
tral group. European ancestry classification required that 
the target PC1 and PC2 value fell within 1.96 standard 
deviations of the minimum and maximum values for the 
1000G European corresponding principal components. 
All other ancestries were classified as non-European.

Top ranking ASD discovery SNPs
This analysis uses the top 88 discovery variants by p-value 
that were implicated in the ASD discovery GWAS [12]. 
The discovery GWAS combined samples from the Danish 
iPSYCH population as well as samples from the Psychiat-
ric Genomics Consortium (PGC), totaling 18,381 cases 
of ASD and 27,969 controls reflecting European ancestry. 
Following initial identification of 88 top loci, a replication 
analysis was conducted with another 2,119 cases of ASD 
and 142,379 controls pooled across five different popula-
tions of Northern European ancestry. The three identified 
loci were found to be significant, while two additional 
loci became significant when meta-analyzed with the dis-
covery sample. Although the majority of the single vari-
ant tests did not achieve statistical significance, a test to 
replicate the direction of effects was significant. For each 
identified top variant, the minor allele frequency, p-value, 
and odds ratios were provided in Supplementary Table 1.

Identifying correlated SNPs
In addition to the original list of 88 top variants, nearby 
SNPs that were highly correlated with the discovery index 
variants were identified as proxies. We accomplished this 
by accessing the GRCH37 REST API database (http:// 
grch37. rest. ensem bl. org) via R software. The Ensemble 
database uses the 1000G phase 3 reference to perform 
searches for correlated SNPs in specific windows. Proxy 
searches were performed specifying a reference panel 
made up of samples with European ancestry. Proxies 
were kept if they were found to be in linkage disequilib-
rium (LD) with the index SNP at  R2 >  = 0.80. When mul-
tiple proxies were available for a missing SNP, the proxy 
was selected based on highest  R2 with the index SNP and 
closest physical distance.

Calculating single variant coverage among top ASD hits
Representation of the original index or proxy SNP was 
determined for cleaned and imputed target datasets by 
evaluating the overlap using chromosome, base pair, 
and variant identifier (rs number). An identical process 
was applied to obtain coverage for the Global Diversity 
Array-8 (GDA) and the Infinium PsychArray. Because 

we did not have target samples typed on these arrays, we 
were only able to evaluate coverage for variants on the 
pre-cleaned manifest files. The manifest files we down-
loaded for evaluation are publicly available on the Illu-
mina website ( [1, 2]).

Literature search for published reports using an ASD 
polygenic score
To characterize the methods for deriving and describing 
ASD-PGS that are commonly employed by researchers 
to date, we conducted a literature search in PubMed to 
identify manuscripts published through October 2022 
that reported on ASD-PGS associations, where the tar-
get sample was in children and the outcome was either 
ASD or an ASD-related trait. We searched on the terms 
“ASD” and “Polygenic Risk Score” to obtain 109 poten-
tial hits. We also supplemented our search with the same 
terms in Google, evaluated the suggested literature from 
each identified manuscript, and considered references 
returned by the PGS Catalog [32] when searching for 
“autism”. Two researchers evaluated each abstract to rule 
out those studies that did not report on an ASD-PGS, did 
not perform analyses in children, or did not report on 
child ASD status or child ASD trait. We did not consider 
randomized trials. After a review of abstracts, 36 poten-
tial manuscripts met our criteria, and of these, 24 were 
selected for extraction. Extraction included the method 
and software used to derive ASD-PGS, parameters speci-
fied for the method, and whether the number of SNPs 
informing the ASD-PGS was reported.

Creation of an information metric for polygenic scores
While there exist several methods to derive PGS, the 
majority of researchers employ the clumping and thresh-
olding (C + T) method [33], where redundant SNPs due 
to linkage disequilibrium (LD) are removed (i.e. clump-
ing), and only the SNPs that fall below an established dis-
covery p-value threshold level are included in the score 
(i.e. thresholding). Scores are derived using PLINK soft-
ware [28, 34], which can also be implemented via PRSice 
version 1 [35] or version 2 [36]. To derive a score, the 
researcher must specify: 1) a reference panel, 2) a target 
panel and 3) a target population. The reference panel will 
be used to determine the amount of LD between nearby 
SNPs, supervised by discovery effect sizes or p-values, 
to make decisions about which SNPs to prune in the 
“clump” procedure. The target panel will limit the choice 
of SNPs to those available after cleaning and/or imputing 
the target array data. Thus, together, the reference and 
target panels will incorporate the discovery information 
to select the list of SNPs that inform the PGS. Finally, 
using the clumped SNP list, the “score” command will 

http://grch37.rest.ensembl.org
http://grch37.rest.ensembl.org
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sum and weight each genotype for each sample in the tar-
get population.

With this C + T method, if a SNP, or any proxy SNP, is 
not available to represent a genomic region, its failure 
to be incorporated into the PGS calculation is likely to 
result in information loss. Even in the case when a proxy 
SNP is selected from the target panel to represent the 
index discovery SNP, some information loss will occur. 
Our goal was to assess the impact of these missing repre-
sentations of discovery loci due to lack of coverage when 
using a C + T method to derive ASD-PGS, even after high 
quality imputation recovered a number of SNPs in the 
target data that were not present on the cleaned, meas-
ured GWAS array.

To accomplish this, we made use of the 1000G phase 3 
v5 reference panel [31], which contains a comprehensive 
set of genetic variants from whole genome sequencing 
across 26 different populations. We limited the reference 

panel to the 498 unrelated individuals of European ances-
try (eur1kg). The eur1kg panel can serve as the reference 
panel when clumping, and can also act as a high cover-
age, comprehensive target panel, in addition to serving 
as the target population. Alternatively, the high quality 
post-imputed data from a target cohort can also serve 
as a target panel, and the samples can be used as the tar-
get population in whom scoring takes place. We com-
pute two different PGS as outlined in Fig. 1. All PGS are 
informed by the Grove et  al. discovery results, and the 
eur1kg panel is always specified as the reference panel 
of choice. The first score represents the score computed 
from a comprehensive panel and specifies the eur1kg 
as both the target panel and the target population (full-
eur1kg PGS); the process to create full-eur1kg PGS is 
shown in Fig. 1 on the left. The second score represents 
the PGS computed using the cohort target panel, which 
is not as comprehensive as eur1kg. This second PGS 

Fig. 1 PGS Computation Workflow. Legend: Our genome‑wide information metric is simply the direct correlation between full‑eur1kg 
and target‑eur1kg PGS, which reflects information loss genome‑wide. A correlation of 1.0 indicates that no information loss occurred, whereas a low 
correlation suggests a substantial loss of information. We derive each ASD‑PGS using a C + T method, limiting to biallelic, high quality (info > 0.80) 
SNPs, for a suite of p‑value discovery thresholds (5 ×  10–8, 1 ×  10–6,  10–4,10–3, .01, 0.05, 0.10, 0.20, 0.50 and 1.0) scored in PLINK software. Because 
target‑eur1kg‑ASD‑PGS were clumped and scored for each cohort separately, a different SNP selection informed each of the target‑eur1kg PGS, 
leading to cohort‑specific correlations with the full‑eur1kg PGS
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is scored in the eur1kg sample to serve as an “apples to 
apples” comparison to the full-eur1kg PGS, as shown 
on the right of Fig. 1 (referred to as target-eur1kg PGS). 
Our coverage metric is the correlation between the full-
eur1kg and target-eur1kg PGS, which will range from 0.0 
to 1.0.

Results
Characteristics of the target cohort samples
The total number of samples, as well as sex and ancestry 
distributions per target cohort, are provided in Table  1. 
The samples include ASD children, parents and siblings. 
A large majority of the samples reflect European ancestry 
in both the IBIS (88.5%) and SEED (69.6%) studies, while 
EARLI (56.4%) and MARBLES (54.5%) are slight majority 
European. All cohorts had < 10% of the sample East Asian 
and African, but admixed individuals make up a size-
able minority (ranging from about 10% to 30%). EARLI 
and IBIS have a more balanced sex proportion than 
MARBLES and SEED, which have predominantly female 
samples. The total number of samples across all cohorts 
ranges from 633 to 914 individuals.

Characteristics of top 88 variants
Grove et  al. (2019) provided metrics for the 88 variants 
selected for follow up from their discovery efforts, and 

we provided the ranges reported on allele frequency and 
effect sizes in Supplementary Table  1. All minor allele 
frequencies for each of the top 88 variants were > 1%. The 
odds ratios for the variants reflected moderate to mod-
est effect sizes, ranging from 0.658 to 1.342. Of the total 
number of SNPs, 70 (79.55%) were bi-allelic. As expected, 
all 88 variants exhibited suggestive statistical significance 
(p-values < 1 ×  10–5) in the original analysis, with 53 of the 
88 variants also achieving significance in the follow-up 
study [12].

Coverage of top ASD discovery variants
The surviving number of SNPs and coverage among 
the 88 variants identified via discovery are provided in 
Table 2 for clean, measured genotypes and for high qual-
ity  (R2 > 0.80) post-imputation genotypes. Considering 
the clean, measured genotypes, no study panel we exam-
ined directly covered all 88 of the top variants. For the 
IBIS and EARLI studies, which were both genotyped 
using the 5 M arrays, 31 (35%) and 32 (36%) variants were 
represented, respectively. MARBLES (1  M array) and 
SEED (GSA array) only contained 11 of the index vari-
ants. Including proxy SNPs improved coverage for meas-
ured genotypes across all studies, with 52 of the index 
discovery variants represented in IBIS, 54 represented in 
EARLI, 28 in MARBLES and 31 in SEED. Once we con-
sidered high quality imputed variants, coverage for IBIS 
and EARLI cohorts reached 100%, but MARBLES was 
still missing 6 of the 88 variants and SEED 5 of the 88 
variants.

We also analyzed coverage of the top 88 variants and 
their proxies on the GDA and iPSYCH arrays using pub-
licly available manifest files. Initial analysis of the GDA 
array revealed representation of 16 (18%) of the top 88 
variants, and improved to 38 (43%) when including proxy 
variants (see Supplementary Table  2 for full proxy list). 
Analysis of iPSYCH yielded 11 of the original 88 discov-
ery variants on the array, and the inclusion of proxy SNPs 
improved coverage to 25 (28% of all 88 variants).

Table 1 Characteristics of target study participants

Characteristic Type EARLI IBIS MARBLES SEED

N ‑ 827 914 633 863

Sex (%) Male 461 
(55.7)

529 
(57.9)

177 (27.9) 295 (34.1)

Female 366 
(44.2)

385 
(42.1)

456 (72.0) 568 (65.8)

Euro‑
pean

467 
(56.5)

809 
(88.5)

345 (54.5) 601 (69.6)

Non‑
Euro‑
pean

360 
(43.5)

105 
(11.5)

288 (45.5) 262 (30.4)

Table 2 Sample size, variant numbers, and coverage statistics for top ASD hits per cohort

a Coverage reflects the presence on the panel of either the discovery variants itself or at least one proxy SNP. Number in parentheses refers to the non-proxy number
b Full-eur1kg containes 281,593 SNPs after clumping
c Coverage metric reflects the correlation of full-eur1kg and target-eur1kg scores as explained in Fig. 1

Cohort (Array) N measured 
Variants 
surviving QC

N Variants surviving 
post‑imputation QC

N Top ASD 
Variants on GWA 
Arraya

N Top ASD Variants 
surviving post‑
imputation QC

N SNPs in Scoreb ASD‑PGS 
coverage 
metricc

IBIS (5 M) 2,400,509 38,343,801 52 (31)/88 88/88 249,698 0.9569

EARLI (5 M) 2,525,262 38,123,095 54 (32)/88 88/88 242,199 0.9445

MARBLES (1 M) 578,578 33,317,727 28 (11)/88 82/88 229,119 0.9295

SEED (GSA) 877,115 32,275,019 31 (11)/88 83/88 268,035 0.9849
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Findings from a literature search for ASD‑PGS associations
Our literature search identified 24 published manuscripts 
with reports of ASD-PGS with ASD or ASD-related traits 
in children, and extracted information from these manu-
scripts is in Supplementary Table 3. Almost all microar-
rays were from Illumina and ranged from the 550 Quad 
chip to the more recent GSA chips. In all verifiable 
studies, PGS were made from imputed genotypes. Four 
studies employed a method other than C + T to derive 
ASD-PGS. Among those using C + T, we observed a 
range of specified  r2 for LD correlation and window siz-
ing, and about half employed a version of PRSice to carry 
out scoring. Only one study employed both long- and 
short-range pruning. Importantly, among the 24 studies, 
16 reported the number of SNPs that informed the ASD-
PGS, however, no alternate metric to reflect informa-
tion loss due to SNPs that weren’t directly represented or 
indirectly represented by proxy in the score was reported.

Genomic coverage using ASD‑PGS
To determine potential loss of information in the ASD-
PGS from unrepresented or indirectly represented vari-
ants across the genome, we correlated two different PGS, 
both derived in the 1000G sample, using complete SNP 
data and again using only the available SNP target data, as 
explained in the Methods and depicted in Fig. 1. Figure 2 
shows a scatter plot between the eur1kg-full-PGS and 
the eur1kg-target-PGS, color coded for each high ASD 

likelihood target cohort and the SEED 1 target cohort. 
The two different PGS informing our metric exhibited a 
linear relationship with each other for all target cohorts, 
confirming that a correlation is an appropriate compari-
son statistic. In general, correlation was high for all study 
platforms, ranging from 0.9295 to 0.9849, using the most 
liberal discovery p-value threshold of 1.0 (see last column 
Table 2).

Figure  3 shows correlations between the full and tar-
get PGS by select discovery p-value thresholds. We con-
sistently saw a drop in our PGS coverage metric for the 
suggestive discovery p-value threshold of 1 ×  10–6, but 
coverage improved thereafter, suggesting that coverage 
is particularly low for ASD in the statistically suggestive 
range. Results for all p-value threshold levels are provided 
in Supplementary Table 4. We did not observe clear pat-
terns between PGS coverage and platform array density 
or for the number of SNPs informing the ASD-PGS.

Discussion
We evaluated coverage of top GWAS hits for ASD for a 
number of Illumina microarrays. We used available geno-
type data from the Illumina 5 M, MEGA and GSA arrays, 
plus two arrays using publicly available manifest files. 
The modern GWA arrays increasingly used in genetic 
research include the Illumina PsychArray (iPSYCH), 
Global Diversity Array (GDA) and Global Screen-
ing Array (GSA). These modern arrays are less costly 

Fig. 2 Correlation between Full‑eur1kg ASD‑PGS and Target‑eur1kg ASD‑PGS for each of the 498 eur1kg samples. Legend: A separate 
Target‑eur1kg ASD‑PGS was made in each of the four target cohorts, reflecting the different SNP selection that emerged from the pruning 
process. “The correlation coefficient for each study using this data reflect the ASD‑PGS coverage metric reported in the last column of Table 2.” The 
Full‑eur1kg is the same for each cohort. All scores represent a discovery p‑value threshold of 1.0
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compared to the denser (5 M or 2.5 M) arrays. They are 
also designed to expand on the intent of the Multi-ethnic 
arrays (MEGA or 1  M), which included variants meant 
to tag diverse ancestries and improve imputation perfor-
mance. The modern arrays continue to represent diverse 
ancestry while providing content for an increasing num-
ber of clinical traits or disease outcomes. Our evalua-
tion of coverage determined that many variants are not 
directly represented. For GSA, 5 M and MEGA chips, less 
than half of the 88 variants identified in large-scale GWA 
for ASD were directly represented. Using publicly avail-
able manifest files, we observed similar low coverage for 
the iPSYCH and GDA arrays as well. Further, when con-
sidering proxy SNPs that are highly correlated with the 
index variant, we still observe incomplete coverage for all 
arrays.

We then re-calculated coverage using available study 
genotype data after standard QC procedures for GSA, 
MEGA and 5  M arrays, and confirmed that coverage 

for measured genotyping is incomplete. Perhaps most 
importantly, we identified that for the dense 5  M array, 
high quality imputed data can bring the coverage to 
100%, but for less dense arrays, while providing high cov-
erage, high quality imputation can still fall short of com-
pletion. These findings suggest that attempts to recover 
lost SNPs are not guaranteed to be successful, and that 
different microarrays can yield varying levels of coverage.

The results of our literature search provide a gestalt 
for the state of current research practices when deriv-
ing ASD-PGS in target study data. We found that the 
vast majority of studies used a C + T method rather than 
using alternative methods, such as LDPred [37], that may 
somewhat improve variance explained [38]. Papers pub-
lished more recently, however, are beginning to employ 
these newer methods. The C + T approach, however, is 
still likely to continue to be a popular approach due to its 
intuitive appeal, lower computational requirements, and 
the fact that it can be scored in PLINK software, which 

Fig. 3 The correlation metric (Full‑eur1kg ASD‑PGS versus Target‑eur1kg ASD‑PGS) representing loss of information in each of the four target 
cohorts. Legend: The metric represents information loss or genome‑wide coverage from using a pruning and thresholding derivation method 
in each of the four target cohorts. Thresholds for discovery p‑values are genome‑wide significant (5 ×  10–8), genome‑wide suggestion (1 ×  10–6), 0.05 
and 0.20
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is familiar to many researchers. We also observed that 
though software and parameter specification for C + T 
varied somewhat, the general procedures and software 
were quite similar across studies. Importantly, the only 
metric reported across these studies that reveal insight 
into the coverage of the target study ASD-PGS was the 
total number of SNPs incorporated into the score, high-
lighting the gap in current research practice for evalu-
ating information loss. It is also notable that one-third 
of the studies did not report any metric yielding some 
insight into SNP coverage for the ASD-PGS. Interest-
ingly, the University of Michigan Imputation Server is 
offering a beta version to derive PGS for hundreds of 
different traits, using discovery findings published in 
the PGS Catalog [32], but appears to only offer the total 
number of index SNPs contained in the score as a meas-
ure of PGS coverage.

We then explored a simple and novel approach that 
would intuitively provide an indication of information 
loss. Our metric, in addition to addressing the selec-
tion of SNPs, reflects the extent to which this imperfect 
or missing information is influenced by observed allele 
frequencies and weighted by the discovery effect size, 
so that the joint impact of all these factors on the PGS is 
incorporated into the measure. Thus, we provide an intu-
itive, scalar measure that reflects the true loss of infor-
mation genome-wide from multiple sources that is not 
readily intuitive by reporting the total number of SNPs.

To compute our PGS coverage metric for ASD, we use 
the eur1kg reference panel. For the ASD trait, our choice 
to compute the full-eur1kg and target-eur1kg scores in a 
European panel is appropriate because reference and dis-
covery ancestry should reflect each other [39], and the 
ASD discovery is comprised almost entirely of individu-
als of European descent. There exist many alternative ref-
erence panels that offer a comprehensive set of variants 
via sequencing to calculate a PGS coverage metric. For 
example, the Haplotype Reference Consortium (HRC) 
[40] may provide better imputation accuracy, particularly 
for rare variants, due to its larger sample size compared 
to the 1000G European populations [41]. Several pan-
els are also available to researchers representing African 
ancestry including the Consortium on Asthma among 
African ancestry Populations in the Americas (CAAPA) 
[42], the African Genome Resources (AGR) (https:// 
www. apcdr. org/) and African Genome Variation Project 
(AGVP) [43]. The selection of reference panel to compute 
a coverage metric will depend on the ancestry of the dis-
covery population as well as consideration for the ances-
try of the target population.

Our PGS metric can serve as a useful tool for research-
ers. Current published studies for ASD-PGS focus on 
the association with ASD outcomes for the purpose of 

gaining insight into the disorder’s genetic etiology. With 
the establishment of the PGS Catalog and the opportu-
nity to compute PGS via the Michigan Imputation Server 
based on the PGS Catalog discovery input, focus may 
shift to creating genetic scores in target samples that are 
derived from pre-prepared, filtered and pruned SNP lists 
from a standard reference population. In this case, the 
target sample PGS value can be placed directly along the 
distribution of PGS in the reference population to deter-
mine if a target individual has a high, average, or low 
genetic load, rather than relying on the relative ordering 
of samples within a target study. If index SNPs are not 
directly genotyped and/or not surviving pre-imputation 
QC procedures, then knowledge about how this poten-
tially influences coverage would be important to calcu-
late and report. As PGS methods and discovery findings 
develop for ASD and other traits, we argue that the 
reporting of an intuitive coverage metric that captures 
lost discovery information should become an essential 
part of any future PGS effort.

Limitations
There were several limitations to our study. First, 
although we present coverage prior to cleaning and impu-
tation, using Illumina manifest files for several arrays, we 
did not measure our own genotypes using either of the 
GDA or iPSYCH arrays. A lack of in-hand data for these 
studies prevented us from assessing top hits coverage 
after cleaning and imputation procedures were applied as 
well as from computing our PGS coverage metric. These 
arrays, however, have high overlap with the GSA, so our 
findings using the SEED data, which was genotyped on 
the GSA, may provide a good estimate of the GDA and 
iPSYCH coverage. Second, our analysis is in studies with 
modest sample sizes, and additional evaluation with 
studies ranging from a small to large number of samples 
may offer the opportunity to better explore trends in cov-
erage. Third, our computation of top variant coverage as 
well as PGS coverage could have been influenced by the 
presence in our target cohort samples of non-Europeans 
via any influence these samples may have had on the QC 
and imputation process. To acknowledge this influence, 
we computed minor allele frequency and Hardy Wein-
berg Equilibrium p-values in separate ancestries before 
applying filtering criteria. When imputing, we included 
all 1000G ancestries along with our target samples and 
impute to the full multi-ethnic 1000G panel. Despite dif-
fering LD pattern between ancestries, previous research 
has suggested that this strategy of imputing to a diverse 
ancestry panel can result in higher imputation accuracy 
[44, 45], and thus, the presence of non-European target 
samples should have little to no influence on our coverage 
metric. Fourth, the PGS coverage metric was computed 

https://www.apcdr.org/
https://www.apcdr.org/
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in Europeans, and is not generalizable to non-European 
ancestries. Although beyond the scope we have defined 
here, large-scale GWAS in non-European ancestries are 
available for some traits and can be used to explore PGS 
coverage. Finally, we limit our approach to the clumping 
and thresholding method of PGS derivation, but exten-
sions to LDpred2 [37, 39] and other derivation methods 
including SBayesR [46], SDPR [47], PRS-CS [48] and oth-
ers may be possible.

Conclusions
In summary, we provide insight into the coverage of top 
ASD GWAS variants for a number of commonly used 
genome-wide microarrays. We also create and apply a 
genome-wide coverage metric to assess how well the 
ASD-PGS in a particular target sample is incorporat-
ing the available information from the discovery GWA 
results. While applied only to ASD here, our approach 
can be used for any trait with available discovery results 
and offers a more intuitive and satisfying alternative 
to reporting the total number of SNPs included in the 
PGS. There may be natural extensions of our metric for 
other PGS derivation methods beyond the clumping and 
thresholding approach that can be explored in future 
research.
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