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Abstract

Background: Lowe syndrome (LS) is caused by loss-of-function mutations in the X-linked gene OCRL, which codes
for an inositol polyphosphate 5-phosphatase that plays a key role in endosome recycling, clathrin-coated pit
formation, and actin polymerization. It is characterized by congenital cataracts, intellectual and developmental
disability, and renal proximal tubular dysfunction. Patients are also at high risk for developing glaucoma and
seizures. We recently developed induced pluripotent stem cell (iPSC) lines from three patients with LS who have
hypomorphic variants affecting the 3′ end of the gene, and their neurotypical brothers to serve as controls.

Methods: In this study, we used RNA sequencing (RNA-seq) to obtain transcriptome profiles in LS and control
neural progenitor cells (NPCs).

Results: In a comparison of the patient and control NPCs (n = 3), we found 16 differentially expressed genes
(DEGs) at the multiple test adjusted p value (padj) < 0.1, with nine at padj < 0.05. Using nominal p value < 0.05, 319
DEGs were detected. The relatively small number of DEGs could be due to the fact that OCRL is not a transcription
factor per se, although it could have secondary effects on gene expression through several different mechanisms.
Although the number of DEGs passing multiple test correction was small, those that were found are quite
consistent with some of the known molecular effects of OCRL protein, and the clinical manifestations of LS.
Furthermore, using gene set enrichment analysis (GSEA), we found that genes increased expression in the patient
NPCs showed enrichments of several gene ontology (GO) terms (false discovery rate < 0.25): telencephalon
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development, pallium development, NPC proliferation, and cortex development, which are consistent with a
condition characterized by intellectual disabilities and psychiatric manifestations. In addition, a significant
enrichment among the nominal DEGs for genes implicated in autism spectrum disorder (ASD) was found (e.g.,
AFF2, DNER, DPP6, DPP10, RELN, CACNA1C), as well as several that are strong candidate genes for the development
of eye problems found in LS, including glaucoma. The most notable example is EFEMP1, a well-known candidate
gene for glaucoma and other eye pathologies.

Conclusion: Overall, the RNA-seq findings present several candidate genes that could help explain the underlying
basis for the neurodevelopmental and eye problems seen in boys with LS.

Keywords: Lowe syndrome, Dent disease, EFEMP1, Glaucoma, Macular degeneration, Cataracts, OCRL, MEIS2,
TMEM132, SPON1, DPP10, Kv4.2

Introduction
Lowe syndrome (LS) (OMIM #300535) is a rare gen-
etic disorder (~ 1/500,000 males) caused by muta-
tions in the X-linked gene, OCRL (OCRL-1) [1–4]. It
is characterized by the triad of congenital cataracts,
intellectual and developmental disability (IDD), and
renal proximal tubular dysfunction [1, 5–10]. Hypo-
tonia, epilepsy, stereotypical behaviors, and a high
rate of glaucoma are also observed.
OCRL codes for a 901 amino acid protein, inositol

polyphosphate 5-phosphatase that plays a key role in
endosome trafficking, clathrin-coated pit formation,
and actin polymerization, by catalyzing the removal
of the 5′ phosphate from phosphatidylinositol 4,5-
bisphosphate (PI(4,5)P2), phosphatidylinositol 1,4,5-
trisphosphate, and inositol 1,3,4,5-tetrakisphosphate
[10–16].
The molecular basis of LS has primarily been stud-

ied in fibroblasts derived from patients and immortal-
ized cell lines (e.g., HeLa; Cos-7 cells). These studies
show that abnormalities in endosome recycling, in
particular, megalin receptor recycling in the proximal
tubules, and primary cilia dysfunction in the eye,
underlie some of the clinical features [7, 11, 17–21].
However, the neurodevelopmental and behavioral as-
pects of LS have not been adequately investigated in
human neuronal cells or animal models. A zebrafish
ocrl1 deficiency model has been developed, in which
an increase in the susceptibility to heat-induced sei-
zures, cystic brain lesions, and reduced Akt signaling
have been observed [22]. Unfortunately, Ocrl knock-
out (KO) mice have significant limitations as a model
system to study the neurodevelopmental aspect of LS.
The original KO mouse is asymptomatic, due to com-
pensation by the Ocrl paralog, Inpp5b, since a double
Ocrl/Inpp5b KO is embryonic lethal [23–25]. Re-
cently, a mouse model was developed by expressing
the human INPP5B gene, which rescues the double
KO, embryonic lethal phenotype KO [26]. These mice
show an endolysosomal deficit in cultured proximal

tubule cells. However, learning and behavioral deficits
and eye pathologies were not observed.
Because of the dearth of neurodevelopmental find-

ings in Ocrl KO mice, we developed an induced pluri-
potent stem cell (iPSC) model from three patients
and their typically developing brothers. All three LS
subjects have hypomorphic mutations affecting the C-
terminal end of the protein [27]. We previously
showed that neural progenitor cells (NPCs) derived
from patient-specific iPSCs are deficient in their cap-
acity to produce filamentous actin fibers (F-actin) and
WAVE-1, a component of the WAVE regulatory com-
plex (WRC) that controls actin polymerization [27].
The effect of these deficits on neuronal function is
currently under investigation.
Although our preliminary studies have focused on

some of the known effects of OCRL described in
non-neuronal cells, we are also interested in identify-
ing molecular and cellular pathways that might be
uniquely affected in neural cells. One effective ap-
proach to examine molecular disruptions in an un-
biased, genome-wide manner is RNA-seq. Our
previous RNA-seq studies have resulted in the discov-
eries of novel pathways involved in CHD8-associated
autism spectrum disorder (ASD), schizophrenia (SZ)
associated with 22q11.2 deletion syndrome, and a
mouse model for Rett syndrome [28–30]. RNA-seq
has also been used successfully by other groups to
identify pathways of interest in neuropsychiatric and
neurodevelopmental disorders [31–35].
Consequently, RNA-seq was used to screen NPCs de-

rived from LS-specific iPSCs and controls; their typically
developing brothers. At the significant level of nominal p
value < 0.05, 319 differentially expressed genes (DEGs) were
found. Among them, 16 remained statistically significant
after multiple test correction at the adjusted p (padj) < 0.1,
and nine at the padj < 0.05. However, among these, there
were several strong candidates for the eye and behavioral/
neurological pathologies seen in LS; most notably, EFEMP1,
DPP10, and SPON1.
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Methods
Subjects
The study and consent forms were approved by the Al-
bert Einstein College of Medicine (AECOM) internal re-
view board (IRB). A diagnosis of LS was made during
infancy in each patient based on clinical findings (congeni-
tal cataracts, hypotonia), fibroblast OCRL enzyme activity,
and ultimately by genotyping. The patients (LS100, LS300,
LS500) harbor mutations in the 3′ end of the gene that
codes for the ASH-RhoGap domain (Table 1). A detailed
molecular genetic analysis of the effects of these mutations
on splicing can be found in our previous publication [27].
Their neurotypically developing brothers (LS200, LS400,
and LS600, respectively) served as controls. All subjects
were between 11 and 25 years of age when recruited, and
the sibling pairs were 2–4 years apart in age.

Development of iPSCs cells from peripheral blood CD34+ cells
iPSC lines were generated from human peripheral blood
CD34+ cells with a CytoTune-iPS 2.0 Sendai Reprogram-
ming Kit (Invitrogen) as previously described [36]. The
growth and maintenance of the iPSCs used in this study
are described in our recent publication [27].

Generating neural progenitor cells from iPSCs using dual
SMAD inhibition
A monolayer neural progenitor cell (NPC) culture protocol
was adapted from the STEMCELL Technologies STEM-
diffTM SMADi Neural Induction Kit with slight modifica-
tions. Briefly, iPSCs were maintained in mTeSR1 with daily
feeding until cells reached the point of passaging. At the
start of induction, differentiated cells, if present, were manu-
ally removed and the iPSCs were washed with PBS. Gentle
dissociation reagent (STEMCELL Tech) was added for 8–10
min at 37 °C. Cells were dislodged by pipetting with a sterile
1 ml pipet tip and collected in a 15 ml tube. Cell culture
plates were rinsed with DMEM/F12 and added to the tube
containing the cell suspension. Viable cells were counted
with a hemocytometer using the Trypan Blue exclusion
method. Cells were then centrifuged at 300×g for 5 min.
Supernatant was carefully aspirated and the cell pellet was
re-suspended in STEMdiffTM SMADi Neural Induction
Medium + 10 μM Y-27632 to obtain a final concentration
of 106 cell/ml. Two milliliters of cell suspension were ali-
quoted to one well of a 6-well plate that was pre-coated with
matrigel. This was designated as passage 0 (P0). Cells were
allowed to grow with daily feeding for 6 days in STEMdiff

SMADi Neural Induction medium. Note that Y-27632 is
not required for the daily medium changes. NPCs were
ready for passage when cultures were approximately 90%
confluent (6 days). For passaging, NPCs were washed with
DMEM/F12 and 1 ml of accutase was added to each well
for 5 min at 37 °C. Cells were dislodged with a sterile 1 ml
pipet tip and collected in a 15 ml tube containing DMEM/
F12. Viable cells were counted using Trypan Blue exclusion.
Cells were then centrifuged at 300×g for 5 min. Supernatant
was carefully aspirated and the cell pellet was re-suspended
in STEMdiffTM SMADi Neural Induction Medium + 10 μM
Y-27632. Cells were plated at a density of 1.5 × 106 live
cells/well in a 6-well plate pre-coated with PORN/Laminin.
NPCs were fed daily, without Y-27632m, and were ready for
downstream applications at passage 3. At this stage, none of
the cells stained for the stem cell marker, OCT4 (POU5F1)
and virtually 100% were positive for the NPC markers
vimentin and SOX2 (Additional file 1: Figure S1). Further-
more, we compared our NPC RNA-seq data with gene ex-
pression in multiple neural and non-neural cell lines (or
tissues) analyzed by RNA-seq in the ENCODE project [37]
and found that the most correlated cell line was neural pro-
genitor cell (ENCFF663ARH, Pearson’s correlation coeffi-
cients (r) = 0.88) (Additional file 2: Figure S2).

RNA-seq
Total cellular RNA was extracted using the miRNeasy Mini
Kit (QIAGEN, catalogue# 217004) according to the manu-
facturer’s instructions (QIAGEN). An additional treatment
with DNase I (QIAGEN, Valencia, CA) was included to re-
move genomic DNA. After passing quality control, high
throughput sequencing libraries were prepared by Novo-
gene, and 150 bp paired-end RNA-seq reads were obtained.
RNA-seq reads were aligned to the human reference gen-
ome (hg19) by the software HISAT2 (v2.0.4) [38]. HTseq
(v0.11.0) [39] was used to determine the read counts while
the StringTie (v1.2.2) [40] was used to compute fragments
per kilobase of exon per million fragments mapped (FPKM)
and transcript per million (TPM) for each of the genes an-
notated in the GENCODE database (v29) [41], including
protein-coding, non-coding, and all other transcript types.
Genes with TPM > 1 in at least one of the 12 samples were
used for downstream analysis. RNA-seq read counts of the
two biological replicates (A/B) were merged using the “col-
lapseReplicates” function in the software DESeq2 [42],
resulting in three samples each for the patient and control
NPCs for differential expression analysis genes by DESeq2.

Table 1 OCRL mutations in patients

Patient Exon/intron Mutation Genomic position (hg19) Type

LS100 Intron 23 c.2582-1 G>T chrX:128724122 Splice acceptor

LS300 Intron 22 c.2470-2 A>G chrX:128723820 Splice acceptor

LS500 Exon 20 c.2179delC chrX:128721069 Del/frame shift
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The overlap of DEGs with various disease gene lists was
evaluated for statistical significance by Fisher’s test. We also
performed gene set enrichment analysis (GSEA; v4.0.1),
using the gene sets in the gene ontology (GO) “Biological
Process” category and ranking genes (n = 20,728) by fold
changes (“log2_Ratio_of_Classes”), and otherwise default
parameters.

Quantitative real time PCR
Quantitative real-time PCR (qPCR) was carried out on
reverse-transcribed PCR using the 2-ΔΔCt method as we
previously described [28, 29, 43].

Immunocytochemistry
Immunocytochemistry (ICC) was carried out as previ-
ously described [27] using mouse anti-Vimentin (Invitro-
gen cat#18-0052) at a 1:100 dilution, and Anti-Sox2
(StemCell Technologies cat#60055.1) at a 1:50 dilution.

Western blotting
Proteins were prepared with ProteoExtract Complete Mam-
malian Proteome Extraction Kit (Millipore cat# 539779) ac-
cording to the manufacturer’s protocol. Protein
concentrations were verified using the Bradford method.
Briefly, 30–60 μg of protein were denatured with the
addition of Laemmli buffer and 2-mercaptoethanol, and
boiled for 5 min. Samples were loaded onto a 12% precast
polyacrylamide gel (BIO-RAD cat#456-1044). Gel electro-
phoresis was set at constant voltage (50 V) for the first 30
min and 120 V for the remainder of the run. The running
buffer was in 1× TrisGlycine/SDS buffer. After separation by
electrophoresis, proteins were transferred using the Trans-
Blot® TurboTM Transfer System according to the manufac-
turer’s instructions. A 7-min transfer was executed using the
turbo program setting. After transfer, membranes were
blocked in 5% milk with gentle agitation for 1 h at room
temperature. Membranes were then incubated overnight
with gentle agitation at 4 °C with primary antibodies for 48
h (Anti-OCRL; Proteintech Group, catalog# 17695-1-AP, 1:
500 dilution: Anti-GAPDH; ThermoFisher Scientific, cata-
log# MA5-15738, 1:2,000 dilution). Following primary anti-
body incubation, membranes were washed three times with
gentle agitation in 1× TBS/T buffer (20 mM Tris Base,
0.136 M NaCl, 0.1% Tween-20). Membranes were then in-
cubated with a secondary antibody (1:5,000 dilution) plus
anti-biotin (1:2,000 dilution) for 1 h at room temperature
with gentle agitation. Membranes were washed again, as
above, and subsequently incubated with SuperSignalTM

West Dura Extended Duration Substrate (Thermo Scientific
cat# 34075) for 5 min at room temperature with gentle agi-
tation. Immediately thereafter, membranes were exposed
to blue autoradiograph film for visualization. For quantifi-
cation, autoradiograms were scanned and the protein of

interest was normalized against a control protein,
GAPDH

OCRL knockdown
An immortalized human retinal pigmented epithelium cell
line, RPE-1 (ATCC® Number: CRL-4000), was used for
OCRL knockdown (KD) experiments. These were carried
out with Dharmacon™ siGENOME Human OCRL siRNA
(cat# D-010026-01-0005, Horizon Discovery) and were
transfected into RPE cells using DharmaFECT 1 Transfec-
tion reagent (Horizon Discovery) in DMEM medium con-
taining 10% FBS without antibiotics. siGENOME non-
targeting siRNA #3 (cat#D-001210-03-05, Horizon Dis-
covery) was used as a control. siRNAs were transfected
into RPE-1 cells at a concentration of 25 nM for 72 h ac-
cording to the manufacturer’s protocol.

PCR primers used in this study

Gene Left Right

β2M gctcgcgctactctctcttt caatgtcggatggatgaaac

OCRL_LS500 cctgcatgaccagaatttga ttaaaagcgctatgctgacg

OCRLexp-F acaggtcctgcttcccacta tggaggtggatgtctaggca

OCRLexp2-F atccacctccagagcaacac gctgtgggaaggagcaatag

OCRL_KO agagctgccctcatttcctt tgggcctggacttgataaaa

LS100cDNA ttttcttggaagccctgcca tgccataaggttgggtggag

LS300cDNA agcgtcaatgccaacatgatc aaggagggattaggaaacgctc

OCRL_LS100/300 attgtgttggccatgaggag ggaggcctcaggagaagact

Sequencing primers

LS100seq aatactcttagtgcattgtatc

LS300seq tagaagttagacagatgaaatg

LS500 cctgcatgaccagaatttga

qPCR primers

TMEM132C cacctctatggcagctctcc cccgactgttcttcaccact

TMEM132D gaatcctgccagaaatccaa gtgttggggttagcatcgtt

INPP5F tagcgttcatgctccttcag atatgtgtacgtcgccagca

MEIS2 ccaggggactacgtttctca tgagtagggtgtggggtcat

SLC1A3a gccttgagcaagtcccatct caggatgtctgggctggaag

ADCY2 gtgcgtgctgtctgtcctat acgatctgggcacacatcag

TMEM47 tcctttgcgctgacaaggat tcaagggctcactcaagcaa

EFEMP1 aagtgcaatgcttgtgctcg gcggaaggtccctatactgc

RPLPO ccaccacagctgctcctg ggctaagttggttgctttttgg

DPP10 gtgtttcgctgcacctatga agggagggaacaacacacac

SPON1 aggagtagtgtcagccacct atggttgcctctccatgtgg

NLRP2 atgctagactgggcagagga cagtccctgaagaccagctc
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Methods (Continued)

CALB1 tatccaggatgtgtggctca tgggtgtactgactggccta

Results
RNA-seq and bioinformatics
iPSCs from three subjects with LS and controls were
differentiated into NPCs. RNA was extracted and
analyzed by paired-end RNA-seq. Two independent
NPC samples differentiated from each iPSC line were
prepared for duplicated RNA libraries sent for RNA-seq,
resulting in a total of 12 biological samples. The overall
quality of the RNA-seq reads and alignment was excel-
lent, with a range of 22,150,351–29,297,502 reads, and
alignment rates from 85.58 to 90.67% (Additional file 3:
Table S1). In addition, we were able to confirm the mu-
tant OCRL genotype for each patient sample in the
RNA-seq reads: loss of intron 23/exon 24 splice site with
cryptic splice site in exon 24 (LS100); loss of intron 22/
exon 23 splice site with absence of exon 23 in the final
transcript (LS300); and a “C” del in exon 20 (LS500)
(Table 1; Additional file 4: Figure S3A-C).
Since the gene expression profiles of the two duplicated

samples were highly correlated, we merged them for
determining DEGs in NPCs comparing LS samples and
their sibling controls (n = 3) using the software DESeq2
[42]. At a nominally significant level (p < 0.05), 319 DEGs
were found (164 genes expressed at higher levels in LS;
155 lower) (Additional file 5: Table S2). At the multiple
test adjusted p value (padj) < 0.05, we found nine DEGs
(PCDHB5, BARHL1, NLRP2, EFEMP1, SPON1, GDA,
CALB1, ZNF736, PITX2), with an additional seven at padj
between 0.05 and 0.1 (INPP5F, PEG3, SPINK5, DPP10,
MAFB, OTP, TMEM132C) (Fig 1a). Of the 16 DEGs that
achieved padj < 0.1, five are known SZ, ASD, IDD or eye
disorder candidate genes (DPP10, GDA, PITX2, EFEMP1,
SPON1) (Table 2).
To address the potential limitation in using thresholds

for selecting DEGs, we also applied the software GSEA to
find enriched GO terms [44, 45]. For genes expressed
higher in patient NPCs, 32 “Biological Process”-related
GO terms were enriched at false discovery rate (FDR) <
25% (Fig. 1b). The top GO terms for LS upregulated genes
were telencephalon development, pallium development,
NPC proliferation, and cortex development, which are
consistent with a condition characterized by intellectual
disabilities and psychiatric manifestations. For genes
showing decreased expression in LS NPCs (an increase in
controls), no GO terms passed the 25% FDR threshold. At
a nominal p value < 0.01, the top terms were vasculature
development, nuclear-transcribed mRNA catabolic
process, and protein kinase B signaling (Additional file 6:
Figure S4).

Finally, we analyzed the overlap of the 319 nominal
DEGs with lists of genes that were associated with ASD,
schizophrenia (SZ), IDD, and eye diseases in previous
studies [46–53] (SFARI [https://gene.sfari.org/autdb/GS_
Home.do]; https://neibank.nei.nih.gov/cgi-bin/
eyeDiseaseGenes.cgi) (Additional file 7: Table S3). We
found that ASD-related genes showed a significant over-
lap with our DEGs (Fig. 2). Among the more interesting
DEGs in the context of behavioral and cognitive prob-
lems are AFF2, ADCY2, DNER, DPP10, CACNA1C,
MEIS2, GDA, RELN, which have been linked to neuro-
developmental disorders and neuropsychiatric disorders
in multiple studies (Table 2) [54–81]. There was also
overlap for genes involved in intellectual disabilities, in-
cluding AFF2, AIFM1, CA8, EEF1A2, MLC1, and XYLT1
[82–87], but statistically the overlap is not significant.
Interestingly, some enrichment (OR = 1.45; Fig. 2) was

also seen for DEGs involved in eye disorders, consistent
with the clinical problems seen in LS. One such gene is
EFEMP1 (EGF containing fibulin extracellular matrix
protein 1), which was the most significantly upregulated
DEG in our study. EFEMP1 has been implicated in
glaucoma in several genome-wide association studies
(GWAS), macular degeneration, age-related macular
dystrophy, and Doyne honeycomb retinal dystrophy
[88–94]. EFEMP1 has also been found to be associated
with suicidal behavior in genetic and molecular studies
[95–98].
Two other DEGs that are involved in both

neurodevelopmental and eye pathologies are MEIS2 and
SPON1. MEIS2 codes for a homeobox protein, and is a
key regulator of trabecular meshwork, lens, and retina
development [99–102]. It was also identified as a risk
factor in an open-angle glaucoma GWAS [103], and
MEIS2 missense mutations and microdeletions have
been found in patients with ASD and developmental
delay [60–62, 81, 104].
SPON1 codes for SPONDIN-1, an extracellular matrix

component involved in axon guidance. Mutations have
been found in a SZ exome sequencing study, and
genome-wide association studies have implicated the
gene in the rate of cognitive decline and dementia sever-
ity in Alzheimer disease [105–108]. It is also a differen-
tially expressed protein in the development of cataracts,
and is a major target of the Pax6 pathway during lens
development [109].
We validated six DEGs by qPCR that were significant

at padj < 0.1 (EFEMP1, TMEM132C, INPP5F, DPP10,
SPON1, CALB1), as well as six others that were nominally
significant (p < 0.05), which showed significant differences
that were in agreement with the RNA-seq data, with the
exception of CALB1. This showed the expected decrease,
but only a trend toward statistical significance was found
(p < 0.08) (Fig. 3). The analysis was carried out on the two
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original RNA samples sent for sequencing and an inde-
pendent set of NPCs.
These findings suggest that the neurodevelopmental

features and eye pathologies seen in LS are mediated, in
part, by altered expression of the DEGs we identified.

OCRL KD in RPE-1 cells
To further validate the connection between OCRL
expression and genes involved in eye pathology, we
knocked down OCRL expression in a human retinal
pigmented epithelial cell line, RPE-1. An R345W mutation
in EFEMP1 causes Doyne honeycomb retinal dystrophy
[92], which leads to activation of the alternative comple-
ment pathway in RPE cells [110]. RPE-1 cells were trans-
fected with siRNAs targeting OCRL mRNA, and a
scrambled control. As seen in Fig. 4, significant decrease
in OCRL protein (left panel), and OCRL mRNA (right
panel) occurred in cells treated with OCRL siRNA com-
pared with cells treated with the scrambled control siRNA
(83% decrease in normalized OCRL protein, p = 0.02; 70%
decrease in normalized OCRL mRNA, p = 3.1E-07, Stu-
dent’s t test, two-tailed). This was accompanied by ex-
tremely large increases in the expression of MEIS2, which
is a regulator of retinal development, as noted above, and

EFEMP1 mRNA (p = 0.04 and 0.03, respectively, Student’s
t test, two-tailed). The relatively modest levels of statistical
significance compared with large fold changes are due to
the small sample size (two independent KD experiments;
qPCR carried out in duplicate).
These findings show that the increase in expression of

these genes seen in LS NPCs is directly related to the
loss of function, patient-specific OCRL mutations found
in our subjects.

Discussion
Overall, the transcriptome findings were relatively modest
with respect to the number of DEGs found in all three LS/
control pairs compared to differences found between
patients and controls in other iPSC disease-model systems
that we have analyzed. For example, transcriptome ana-
lyses on NPCs, monolayer neurons, and cerebral orga-
noids derived from CHD8 haploinsufficient iPSC lines
resulted in hundreds of shared DEGs with highly signifi-
cant enrichment of pathways relevant to ASD pathogen-
esis [28, 30]. This could reflect the biological function of
the underlying candidate genes. CHD8 codes for a mem-
ber of the CHD family of ATP-dependent chromatin-
remodeling factors, so major changes in gene expression

Fig. 1 a Volcano plot showing differentially expressed genes (DEGs) at padj < 0.1; lower expression in LS NPCs compared with controls (green);
higher expression (red). b Gene ontology terms enriched in genes that are up-regulated in LS NPCs, as determined by gene set enrichment
analysis. The size of the circles corresponds to the number of DEGs in a GO term, and the color intensity corresponds to the –log10 (FDR) of
enrichment significance. Plots are all GO terms with FDR < 25%
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through both direct and indirect effects on target genes
are expected from its haploinsufficiency. By contrast, all of
the functions so far attributed to OCRL in non-neuronal
cells occur at the post-translational level. As such, many
of our observed DEGs could be due to secondary effects
through a variety of potential OCRL-affected pathways,
such as altered recycling of growth factor receptors linked
to activation of transcription factors, and increases in
membrane-associated phosphatidylinositol 4,5-bispho-
sphate (PI(4,5)P2), which can potentially affect protein
kinase C-mediated gene expression. Interestingly, a tran-
scription factor binding motif analysis of the promoters of
the 319 DEGs found a nominally significant enrichment
of a PITX2 motif (p < 0.05, vs. all promoters). The expres-
sion of PITX2, which is important for the development of
the anterior chamber of the eye and is a glaucoma

candidate gene [111–113], was significantly reduced in the
LS NPCs (Additional file 5: Table S2).
Another factor that could have limited the full

potential of RNA-seq to help understand disease patho-
genesis in our study is that NPCs derived from iPSCs
are grown in vitro under very specific conditions, as op-
posed to NPCs and other neuronal cells derived from a
developing brain where the full repertoire of growth fac-
tors and cell-cell interactions that might affect NPC dif-
ferentiation and gene expression potentially influenced
by OCRL could come into play. Testing this hypothesis
in mammalian brains will have to await the development
of a suitable mouse model that recapitulates the neuro-
developmental features of LS.
Finally, the number of DEGs might have been reduced

because of differences in OCRL expression in the three
LS NPC samples. Although all three patients have
mutations in the ASH-RhoGAP binding domains that
generally produce hypomorphic variants, expression of
LS500 is substantially lower than his brother and the
other LS/control samples (Additional file 5: Table S2).
This was confirmed by qPCR (Fig. 5, top panel). The de-
crease in OCRL mRNA in LS500 is most likely due to
nonsense-mediated decay, and is accompanied by a
marked decrease in OCRL protein (Fig. 5, bottom panel).
These observations suggest that producing a truncated,
dysfunctional OCRL protein may have additional effects
on gene expression and other phenotypes compared
with a simple reduction in OCRL protein levels. This
could help explain phenotypic differences seen in LS pa-
tients. For example, while every patient has the triad of
congenital cataracts, IDD, and renal proximal tubular
dysfunction, subgroups of patients have epilepsy, stereo-
typical behaviors, and glaucoma. In addition, this hy-
pothesis could also help explain the more dramatic
clinical differences seen in LS and patients with OCRL-
associated DENT-2 disease, the latter of which is char-
acterized by renal disease, without eye and behavioral
manifestations [114–117]. In addition, we previously
found differences in the production of F-actin and
WAVE-1 in LS NPCs compared with NPCs made from
a null OCRL iPSC line that we generated using CRISPR-
Cas9 gene editing [27]. However, in that study, the
LS500/LS600 pair showed the same abnormality as the
other two patient/control sets. Thus, other factors need
to be invoked to help explain the clinical and molecular
heterogeneity seen in LS and DENT-2 disease, such as
genetic background. Generating additional patient-
specific lines, as well as creating null and patient-specific
mutations using CRISPR-Cas9 gene editing in isogenic
lines to control for genetic background, will be needed
to sort through these intriguing possibilities.
We presented our results by a combined analysis of

the patient and control NPCs. We have also tried to

Table 2 Genes involved in ASD, SZ, ID, and eye disorders that
overlap with the 319 nominal DEGs. Two additional genes were
included based on literature support: MEIS1 is a glaucoma
candidate that is not in the NEI/NIH eye database, and SPON1 is
not in any of the SZ candidate gene databases, but was
recently identified in an exome sequencing study (both
denoted by asterisk *). Genes shown in bold type are the DEGs
at padj < 0.1

ASD SZ IDD EYE

AFF2 BMP6 AFF2 CNGB1

ANO5 CA8 CA8 COL2A1

CA8 CACNA1C EEF1A2 EFEMP1

CACNA1C CHN2 MLC1 MEIS2*

CADPS2 CHRFAM7A RELN PITX2

COMT COMT TH SPON1*

DNAH3 MLC1 XYLT1 TNFRSF11B

DNER PCDHA6

DPP10 PNPO

DPP6 PPP1R16B

EEF1A2 PROZ

GABRG3 RELN

GALNT10 SLC1A3

GDA SNCG

KCND3 SPON1*

KCNJ12 TH

MEIS2 ADCY2

OTX1

PCDHA6

RELN

RORA

SYT17

ZNF385B
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identify DEGs between the LS samples and controls of
each family. The sample size was small (n = 2), thus
statistical power is weak, but a few thousand DEGs were
detected at fold change > 2 and adjusted p < 0.05
between LS and their corresponding sibling NPC
controls (data not shown). The overlap of the DEGs
from the three families, however, was relatively small,
indicating a high level of gene expression variation in
these NPC samples. Additional LS/control sets, analysis
of multiple clones from the same subjects, and analyzing
isogenic control/CRISPR-edited lines will be needed to
resolve this issue. We are currently generating such
lines.
As an alternative to DESeq2, we also applied the

limma voom differentiation expression analysis [118]
to the jointed analysis of our samples, using its

“duplicateCorrelation” function to account for two
replicates per iPSC line. However, it did not yield
DEGs by our statistical criteria of padj < 0.05 (data
not shown).
Despite the lack of highly enriched pathways from

our DEG analysis, a number of interesting candidate
genes emerged that strongly suggest a role in the
neurodevelopmental and eye problems associated with
LS, and cellular phenotypes we previously identified
in NPCs. As noted in the results section, four out of
the top 16 DEGs genes are known SZ, ASD, IDD
candidate genes (DPP10, GDA, PITX2, SPON1), and
overall, there was a significant overlap between the
319 DEGs and ASD candidate genes (Fig. 2).
Two other DEGs of note are TMEM132C and

TMEM132D, which are feasible candidates for the F-

Fig. 2 Overlap of 319 nominal DEGs with genes implicated in autism spectrum disorders (ASD), schizophrenia (SZ), intellectual disability (ID), and
eye disease. See main text for references and web sites. The size of the circles corresponds to the number of DEGs that overlap with disease-
associated genes in the various data sets, while the color intensity corresponds to the –log10 (p value) from Fisher’s test. The n is the number of
genes expressed in our NPC samples; OR is odds ratio; * denotes p < 0.05
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actin/WAVE1 abnormalities we previously found in LS
NPCs [27]. These genes code for members of a family of
transmembrane, cell-surface molecules expressed in the
brain [119]. TMEM132 proteins have an intracellular

WAVE regulatory complex interacting receptor se-
quence cytoplasmic motif, which is a key regulator of
actin polymerization by initiating F-actin nucleation
through an interaction with the Arp2/3 complex [120].

Fig. 3 Quantitative real time PCR (qPCR). Selected up and down-regulated genes were analyzed by reverse transcribed PCR using the 2-ΔΔCt

method with RPLPO as a control gene. The y-axis is the relative expression compared with a common control RNA. Asterisk(s) (*) and (**) denote
p < 0.05 and p < 0.01 (two-tailed student’s t test). The RNA samples were the same ones used in the RNA-seq analysis, combined with a third set
of RNAs not used in the RNA-seq experiment. Each sample was analyzed by qPCR twice
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Whether TMEM132 proteins affect WAVE-1 expression
in LS NPCs remains to be determined.
One of the more interesting findings in the NPC

transcriptome analysis are the DEGs implicated in eye
pathology. This could represent differential expression
in eye tissue that happen to be similarly affected in

neural cells, or to common developmental pathways,
although this remains to be determined. On the other
hand, recent research suggests that some forms of
glaucoma should be viewed as neurodegenerative
disorders caused by retinal and optic nerve injury
[121, 122], so it is possible that the primary defect

Fig. 4 OCRL knockdown. Left panel shows a western blot of OCRL along with a control protein, GAPDH, after NPCs were exposed to an OCRL
siRNA and a scrambled control. Two independent KD experiments were carried out. The right three panels are qPCR results for OCRL, MEIS2 and
EFEMP1 carried out on two independent RNA samples, both analyzed in duplicate, as described in the methods section an in the Fig. 3 legend

Fig. 5 OCRL protein and RNA. OCRL RNA was analyzed by qPCR (top) as described in the Fig. 3 legend. OCRL protein (bottom) was analyzed by
Western blotting, as described in the methods section. The Western blot was done twice with two independent samples
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related to these DEGs is due to aberrant expression
in neuronal cells.
The most significant DEGs related to LS eye

pathology are EFEMP1, MEIS2, and SPON1I, as noted
above. EFEMP1 is particularly interesting from a
therapeutic perspective because it is connected to
several potentially druggable pathways, including
complement activation, the EGF receptor, and BMP7
and TGFβ2 signaling [110, 123–125]. In addition,
EFEMP1, as a protein secreted into the extracellular
matrix, could be a target for therapeutic intervention
as well.
With respect to EFEMP1, MEIS2, and SPON1, and

glaucoma risk in LS, the fact that these genes have been
implicated in glaucoma and other eye disorders suggests
that understanding how they cause severe eye disease in
LS could have much broader public health implications,
considering the high prevalence of these conditions in
the general population. Thus, the iPSC lines we have
developed could be very useful for screening small
molecule modulators of EFEMP1 and other eye-related
DEGs for a wide range of eye disorders. Their role in
eye pathology can now be analyzed in our iPSC model
system since several protocols have been published for
inducing differentiation into various types of eye tissues
[126, 127].

Limitations
A limitation of the study is the sample size, which is a
general limiting factor for most iPSC studies,
considering the expense and time it takes to cultivate
these lines. In addition, there is a dearth of protein and
functional validation, which means that individual DEG
findings may ultimately fail to be biologically relevant.
Nevertheless, our findings are still of great interest
because the differentially expressed genes are consistent
with what is known about LS with respect to both
neurodevelopmental and eye pathologies. We plan on
increasing our sample size in the next year to improve
the scientific rigor of future transcriptomic studies.

Conclusions
RNA-seq analysis of iPSC-derived NPCs from patients
with Lowe syndrome and their typically developing
brothers identified 319 DEGs, which are enriched with
genes that have been identified as ASD candidates. In
addition, several DEGs code for genes that have been
implicated in the development of cataracts, glaucoma,
and retinal disease. Altered expression of these genes
may play a role in the behavioral and ocular problems
occurring in LS and connect this extremely rare condi-
tion at a pathophysiological level to a much wider popu-
lation of disorders. The study also points to several
feasible targets for therapeutic intervention.
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Supplementary information accompanies this paper at https://doi.org/10.
1186/s11689-020-09317-2.

Additional file 1: Figure S1. Immunocytochemistry (ICC) of NPCs used
in the RNA-seq study (one set) showing Vimentin and Sox2 staining (A
and B, respectively) with a nuclear stain (DAPI).

Additional file 2: Figure S2. Pearson’s correlation coefficients of the
gene expression between NPCs described in the current study and ~300
samples from the ENCODE project. Samples with coefficients > 0.85 are
shown and the highest correlations are NPCs from ENCODE
(ENCFF663ARH), followed by a human neuroblastoma cell line, SK-N-DZ.

Additional file 3: Table S1. Quality of RNA-seq Reads and Mapping.
The number of reads, alignment rates, and reads across different gene re-
gions are similar. The instrument ID, run number, lane number and flow-
cell ID were provided by the Novogene.

Additional file 4: Figure S3. A and B. Sashimi plots of RNA-seq reads
confirming cryptic splice in exon 24 in LS100, and loss of exon 23 in
LS200, as described in Barnes et al. C. shows deletion of "C" in exon 20 in
LS500.

Additional file 5:Table S2. Entire gene list arranged in descending
order of significance level (pval), The top 16 genes with padj < 0.1 are in
bold type.

Additional file 6: Figure S4. Gene Set Enrichment Analysis (GSEA) for
genes that are up-regulated in controls (down-regulated in LS). GO terms
were selected by nominal pval < 0.01 because none passed FDR < 25%.

Additional file 7: Table S3. Overlap of nominal DEGs with ASD, ID, SZ
and eye disease gene datasets. Citations are included in the table.
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