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Abstract 

Background:  Early identification of autism spectrum disorder (ASD) provides an opportunity for early intervention 
and improved developmental outcomes. The use of electroencephalography (EEG) in infancy has shown promise 
in predicting later ASD diagnoses and in identifying neural mechanisms underlying the disorder. Given the high co-
morbidity with language impairment, we and others have speculated that infants who are later diagnosed with ASD 
have altered language learning, including phoneme discrimination. Phoneme learning occurs rapidly in infancy, so 
altered neural substrates during the first year of life may serve as early, accurate indicators of later autism diagnosis.

Methods:  Using EEG data collected at two different ages during a passive phoneme task in infants with high familial 
risk for ASD, we compared the predictive accuracy of a combination of feature selection and machine learning mod‑
els at 6 months (during native phoneme learning) and 12 months (after native phoneme learning), and we identified 
a single model with strong predictive accuracy (100%) for both ages. Samples at both ages were matched in size and 
diagnoses (n = 14 with later ASD; n = 40 without ASD). Features included a combination of power and nonlinear 
measures across the 10‑20 montage electrodes and 6 frequency bands. Predictive features at each age were com‑
pared both by feature characteristics and EEG scalp location. Additional prediction analyses were performed on all 
EEGs collected at 12 months; this larger sample included 67 HR infants (27 HR-ASD, 40 HR-noASD).

Results:  Using a combination of Pearson correlation feature selection and support vector machine classifier, 100% 
predictive diagnostic accuracy was observed at both 6 and 12 months. Predictive features differed between the 
models trained on 6- versus 12-month data. At 6 months, predictive features were biased to measures from central 
electrodes, power measures, and frequencies in the alpha range. At 12 months, predictive features were more distrib‑
uted between power and nonlinear measures, and biased toward frequencies in the beta range. However, diagnosis 
prediction accuracy substantially decreased in the larger, more behaviorally heterogeneous 12-month sample.

Conclusions:  These results demonstrate that speech processing EEG measures can facilitate earlier identification of 
ASD but emphasize the need for age-specific predictive models with large sample sizes to develop clinically relevant 
classification algorithms.
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Background
The past decade has witnessed a dramatic increase in 
the prevalence of autism spectrum disorder (ASD), a 
neurodevelopmental disorder characterized by deficits 
in social communication and repetitive and restrictive 
behaviors [1]. The CDC estimates that one in 54 children 
has an ASD diagnosis [2], up from the one in 88 preva-
lence reported about a decade ago [3]. Currently, ASD is 
diagnosed using behavioral measures, so a diagnosis can-
not be made until toddlerhood or later when behavioral 
symptoms are reliably observable [4]. However, there is 
strong support for the assertion that early intervention 
leads to better intellectual and behavioral outcomes [5, 
6]. Therefore, a central focus for the field has been to 
develop objective, biological markers to facilitate earlier 
detection, and subsequent intervention of ASD.

Neuroimaging measures provide strong candidate tools 
for early identification as they can be obtained from the 
newborn period onwards. For example, several recent 
studies have used magnetic resonance imaging (MRI) 
data collected in infancy to predict ASD diagnoses [7, 8]. 
However, MRI has several drawbacks, including expense 
and participant restrictions, making it a less feasible 
general screening tool. Electroencephalography (EEG), 
on the other hand, may prove to be a more scalable 
tool, given its low cost and ease of acquisition in awake 
and sleeping infants without participant restrictions. 
Moreover, EEG is known to be sensitive to brain-related 
changes in ASD before behavioral symptoms are observ-
able [9–13]. Initial efforts to predict ASD diagnoses using 
baseline (i.e., resting-state) EEG early in life have shown 
promise [14–17]. However, diagnostic prediction using 
EEG recorded during tasks related to ASD symptoms has 
yet to be attempted and may outperform prior baseline 
EEG-based classification.

Language is frequently delayed or impaired in ASD 
[18–22], which may result from atypical peak synap-
tic sensitivity [23] and cortical excitatory and inhibi-
tory imbalance [24] that disrupt neural circuits typically 
involved in language development (e.g., altered sensi-
tive period dynamics). Therefore, focusing on the brain’s 
electrical activity during a language processing task may 
facilitate improved diagnostic prediction accuracy rela-
tive to baseline conditions, and provide insights into the 
neurobiology of language processing deficits within ASD. 
Notably, EEG has been used to measure differences in 
language processing in children with ASD who are older 
than 12 months [25–27], suggesting EEG is sensitive to 
atypical neural processing of language stimuli in ASD.

Perceptual narrowing of phoneme discrimination is 
a critical first stage in language acquisition [28]. Very 
young infants can discriminate between native and non-
native phonemes better than adults, but they lose this 
ability over the first year of life as their phoneme per-
ception is tuned to the language(s) experienced in daily 
life during this sensitive period of learning [29]. How-
ever, there is evidence that phoneme discrimination may 
develop differently in infants with ASD, thereby impact-
ing language development [30–32]. This study focused on 
the phoneme learning sensitive period over the first year 
of life as a potential source of early indicators of subse-
quent ASD diagnosis.

There were two overarching goals of the present 
study. First, we aimed to evaluate whether EEG data 
collected during a language phoneme task at either 6 or 
12 months of age in infants with familial risk for ASD 
can accurately predict later ASD diagnosis. We utilized 
EEG data collected from high familial risk infant sib-
lings as part of a prospective longitudinal study, where 
diagnosis of ASD was determined at 2‑3 years of age. 
Though power analysis of EEG is most common, non-
linear measures can capture dynamical properties of 
the brain that power analysis is not able to quantify. For 
example, entropies evaluate the regularity and stability 
of patterns within the EEG signal, the fractal dimen-
sion measures self-similarity of a signal across multiple 
scales, and the Hurst exponent and detrended fluc-
tuation analysis calculate long-term autocorrelation. 
Beyond capturing nonlinear patterns generated from a 
nonlinear system (i.e., the brain), these measures have 
exhibited sensitivity to changes in the brain’s balance of 
neural excitation and inhibition [33], and the ability to 
index transitions to epileptic seizures [34]. The excita-
tory-inhibitory balance of neural circuits undergoes 
critical developmental shifts during the first year of life 
with significant effects on neuroplasticity [35], includ-
ing those posited to support language development, and 
each of these mechanisms are thought to be disrupted 
in ASD [32]. This prior evidence suggests that nonlinear 
dynamics are core features of healthy brain function and 
may relate to several fundamental neurodevelopmental 
processes over the first year of life. Nonlinear measures 
of adult EEG have accurately classified other clinical 
conditions, including depression [36–38], schizophrenia 
[39–41], and epilepsy [42–44]. Our lab previously found 
that these measures computed from resting-state EEG 
are useful in predicting ASD outcome [16], and we now 
aim to improve predictive capacity by evaluating these 
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measures on language processing-related data. Second, 
given that expected perceptual narrowing of phoneme 
discrimination occurs between 6 and 12 months of age, 
we aimed to compare the EEG features most predictive 
of diagnosis and determine whether there are develop-
mental differences in which features are most impor-
tant during versus after the language phoneme learning 
period.

Methods
Study design and participant demographics
Participants were recruited to Boston Children’s Hos-
pital to participate in a longitudinal study of infant sib-
lings of children with ASD. Institutional review board 
approval was obtained from Boston University and 
Boston Children’s Hospital (# X06-08-0374). All infants 
had a gestational age greater than 36 weeks, no history 
of seizures, prenatal drug exposure, hearing impair-
ment, or known genetic mutation involved in neurode-
velopment. Infants were designated high risk (HR) for 
ASD based on the confirmed ASD clinical diagnosis of 
an older sibling. 104 HR infants were enrolled in the 
longitudinal study and ASD outcome was determined 
using the Autism Diagnostic Observation Schedule 
(ADOS) in conjunction with a clinical best estimate. 
For infants meeting criteria on the ADOS or coming 
within 3 points of clinical diagnosis cutoffs, a Licensed 

Clinical Psychologist reviewed scores and video record-
ings and provided a best estimate clinical judgment of 
ASD diagnosis.

Three sets of EEG data were evaluated in predic-
tive models: a 6-month sample, full 12-month sample, 
and matching 12-month sample. At 6-months, EEGs 
from 54 HR infants were analyzed (14 HR-ASD, 40 HR-
noASD). A “matching” 12-month dataset was curated 
to assess longitudinal changes in ASD prediction at 
the different ages. 13 HR-ASD and 24 HR-noASD par-
ticipants contributed data at both timepoints. The sin-
gle HR-ASD participant in the 6-month cohort who 
did not contribute data at 12 months was replaced by 
an HR-ASD, demographically matched participant. 
All 40 HR-noASD 12-month samples were included in 
the matched dataset, resulting in the same sample size 
as that of the 6-month dataset. Additional prediction 
analyses were performed on all EEGs collected at 12 
months; this larger sample included 67 HR infants (27 
HR-ASD, 40 HR-noASD). Demographic and data qual-
ity information of each outcome group is presented in 
Table  1. Fisher’s exact test was used to evaluate differ-
ences of demographic information between groups. 
The 12-month HR-ASD group had significantly lower 
mean maternal education than the HR-noASD group (p 
= 0.004). No other significant demographic differences 
were observed.

Table 1  Sample demographics of 6- and 12-month-old participants

6-month dataset 12-month dataset

HR-ASD, n = 14 HR-noASD, n = 40 HR-ASD, n = 27 Matching 
HR-ASD, n = 14

HR-noASD, n = 40

Sex 8 M, 6 F 19 M, 21 F 17 M, 10 F 8 M, 6 F 18 M, 22 F

Child ethnicity (%)

  Caucasian 92.9 97.5 77.8 92.9 95

  Hispanic/Latinx 21.4 2.5 14.8 21.4 7.5

  Asian American 0 0 3.7 0 0

  African American 0 0 3.7 0 0

  Multirace 7.1 2.5 14.8 7.1 7.1

Mean household income ($1000s) 65‑75 65‑75 65‑75 65‑75 65‑75

Mean maternal education (%)

  < 4-year college 28.6 27.5 37 28.6 25

  = 4-year college 35.7 15 37 42.9 12.5

  > 4-year college 35.7 57.5 25.9 28.5 62.5

EEG HAPPE metrics (mean [SD])

  Length of raw EEG (s) 701.3 [212.9] 693.6 [220.7] 763.7 [213] 735.8 [225.2] 764.8 [209.5]

  Good channels (%) 93.1 [4.1] 94.2 [4.7] 92 [4.8] 91.6 [4.7] 92.8 [5.5]

  Rejected components (%) 47 [13] 44.1 [13] 43.8 [10] 42.6 [8.4] 43.4 [12.2]

  EEG variance retained (%) 61.6 [13.3] 64.9 [17.4] 66.5 [12.6] 70.1 [10.5] 69.6 [16]

  Mean retained artifact probability 0.16 [0.05] 0.17 [0.03] 0.15 [0.05] 0.16 [0.05] 0.15 [0.04]

  Median retained artifact probability 0.13 [0.06] 0.15 [0.06] 0.1 [0.07] 0.11 [0.07] 0.1 [0.06]
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Behavioral assessments
The Mullen Scales for Early Learning (MSEL) and ADOS 
were administered at each data collection visit of the lon-
gitudinal study, including 6 and 12 months. The MSEL 
provides an index of ability in domains including lan-
guage, cognition, and motor development.

EEG paradigm
A subset of an oddball phoneme speech task was used 
for the present analysis, namely, only EEG data recorded 
during the standard (most frequent) English phoneme (a 
voiced, unaspirated dental/da/). Each trial consisted of 
the auditory stimulus played over 300 ms and followed 
by a variable interstimulus interval between 1000 and 
1200 ms [31].

EEG data acquisition and processing
EEG data were acquired in a dimly lit, sound-attenuated, 
electrically shielded room. A research assistant was pre-
sent in the room to ensure that the infant remained calm 
and still during the language paradigm by blowing bub-
bles or presenting toys if the infant became distracted or 
fussy. Assistants did not engage in social interaction with 
the infant during task completion. EEG data were col-
lected with either a 64-channel Geodesic Sensor Net or 
a 128-channel Hydrocel Geodesic Sensor Net (Electrical 

Geodesics, Inc. (EGI), Eugene, OR, USA), using a 0.1-Hz 
high-pass analog filter and online rereferencing to the 
vertex (channel Cz) through NetStation software (EGI, 
Eugene, OR, USA). Impedances were kept below 100 KΩ 
in accordance with the connected DC-coupled amplifier 
(Net Amps 200 or Net Amps 300, Electrical Geodesics, 
Inc.). Data were sampled at either 250 or 500 Hz.

EEG data were exported from NetStation to MAT-
LAB format (R2017A). Files were batch processed 
using the Harvard Automated Processing Pipeline for 
EEG (HAPPE) within the Batch Electroencephalogra-
phy Automated Processing Platform (BEAPP) software 
[45, 46].

Data were 1 Hz digital high-pass and 100 Hz low-pass 
filtered, downsampled to 250 Hz (if needed), and run 
through the HAPPE module using a spatially distrib-
uted subset of channels (Fig. 1). Default HAPPE artifact-
rejection settings were used as they were optimized for 
this dataset prior to HAPPE’s original release. Namely, 
HAPPE artifact removal steps included bad channel 
identification, electrical line noise removal via Cleanline 
multitapering approach, artifact removal through wave-
let-enhanced ICA and through a second ICA decompo-
sition with automated component rejection above 50% 
artifact probability via the Multiple Artifact Rejection 
Algorithm [47, 48]. Bad channels were then interpolated 
and EEG data were re-referenced to the average reference 
and mean signal detrended.

Fig. 1  Two EEG nets were used in the study: the 128-channel EGI HydroCel Geodesic Sensor Net (version 1.0) presented on the left and the 
64-channel EGI Geodesic Sensor Net (version 2.0) presented on the right. The 10-20 montage channels evaluated in this study are highlighted in 
blue, and HAPPE channels included in preprocessing steps are highlighted in yellow
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EEG data decomposition
The middle 20 s of the longest stretch of consecutive 
standard phoneme (English “da”) presentations in each 
file were selected for analysis to maximize the number of 
participants included while ensuring nonlinear measures 
could be calculated with fidelity. EEG data from 10‑20 
montage channel equivalents (18 channels) for each 
net type were then decomposed into frequency sub-
bands using a discrete wavelet transform and a coarse-
graining procedure (see Supplementary Materials for 
description).

EEG measures
Eleven different nonlinear measures and power were 
computed for each waveband from each of the 18 elec-
trodes for each participant (Table 2).

Feature selection strategies
Across models, three distinct feature selection methods 
were evaluated to prevent model overfitting: selection 
based on (1) the features most correlated with autism 
outcomes (Pearson correlation coefficient), (2) the fea-
tures with most significant F ratio of mean square vari-
ances by group (F test), and (3) the features selected using 
recursive feature elimination (RFE) with cross validation 
based on a linear support vector machine. Each selection 
method was restricted to selecting 20 features.

Classification strategies
We evaluated multiple prediction models that varied 
in classification approach, including a support vector 
machine (SVM) with radial basis function, a Gaussian 
Naïve Bayes algorithm, linear discriminant analysis, and 
a k-nearest neighbors model where k = 7, the square 
root of the sample size of the 6-month and matching 
12-month datasets. All other models were trained using 
default parameters from the Python open source package 
scikit-learn.

Previous studies have found that including test sam-
ples in feature selection biases prediction accuracies 
[52], so we employed nested leave-one-out cross vali-
dation to evaluate the validity of model performance. 
Five metrics were used to evaluate model performance: 
accuracy, sensitivity, specificity, positive predictive value, 
and negative predictive value. Given the imbalanced 
nature of the sample, permutation testing was used to 
assess the significance of observed prediction accuracy. 
A null distribution of predictive accuracy was generated 
by repeating the following procedure over 1000 itera-
tions: diagnostic labels were shuffled and cross valida-
tion analysis using features selected with true labels was 
performed.

Characterizing selected features across 6 and 12 months
To determine the frequency of feature characteristics 
(i.e., channel, frequency band, measure) selected during 
the nested leave-one-out procedure (Fig.  1), the 20 fea-
tures selected over each of the 54 iterations for 6-month 
and matching 12-month datasets were collated over the 
characteristic categories, summed, and then divided by 
the total iteration count. Significant differences between 
diagnostic groups were evaluated with a student’s t test 
with Bonferroni correction for multiple comparisons.

Results
Autism prediction at 6 and 12 months
Various prediction models drawing from three feature 
selection methods and four machine learning classi-
fiers were evaluated for prediction accuracy of future 
autism diagnosis using either 6-month- or 12-month-
matched EEG datasets (each with 40 HR-noASD and 14 
HR-ASD participants). The SVM classifier with features 
selected by the Pearson correlation ranking method 
achieved 100% diagnostic prediction accuracy for both 
ages while other classification attempts were more vari-
able (Table S2). Predictive accuracy using true labels with 
the SVM classifier was significantly better than chance as 
determined by the null distribution generated with ran-
dom labels for both timepoints (6-month z-score 7.35, p 
< 0.0001; 12-month z-score 7.5, p < 0.0001).

Predictive features at 6 and 12 months
The nature and spatial distribution of features selected in 
the successful 6- and 12-month predictive models were 
extracted in order to compare EEG features most predic-
tive of ASD diagnosis either during or after perceptual 
narrowing of phoneme discrimination. Importantly, the 
same feature selection method and machine learning 
algorithm (Pearson correlation coefficient feature selec-
tion and an SVM classifier) achieved 100% predictive 
accuracy for both the 6-month- and 12-month-matched 
datasets, allowing for direct comparison of the features 
selected at each iteration of nested cross validation across 
the two ages.

Figure 2 shows the selection rates of features by chan-
nel, measure, and frequency. At 6 months, features were 
selected largely from central and left of the midline 
locations (Fig. 2A), and power was the most frequently 
selected measure (Fig.  2B). Five of the 12 measures 
(power, approximate entropy, Hurst exponent, Lempel-
Ziv complexity, and permutation entropy) were con-
sistently selected across iterations. Within iterations, 
power was most frequently selected. Additionally, while 
almost all frequency bands were selected at each itera-
tion, sub-bands with frequency ranges below 16 Hz 
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were more frequently selected (Fig. 2C). At 12 months, 
selected channels changed most in the left hemisphere, 
with increased left lateralization (i.e., shifts away from 
midline) and representation from especially dense fron-
tal and temporo-parietal scalp regions (Fig. 2D). Seven 
of the 12 measures were selected in at least 80% of the 
iterations, and half of the selected measures in each 
iteration were power or Lyapunov exponent computed 
at different wavebands and channels (Fig.  2E). While 
measures related to all frequency bands were consist-
ently chosen across iterations, the average count per 
iteration of features related to the 15.6‑31.2 Hz range 
(largely canonical Beta frequencies) was nearly double 
at any other frequency range (Fig. 2F).

We next compared the mean value of each of the 20 
most frequently selected features (see the “Methods” 
section: the “Characterizing selected features across 
6 and 12 months” section) between ASD outcome 
groups (Table  3). After correcting for multiple com-
parisons, only approximate entropy computed from 
the F3 electrode in the delta range (1‑4 Hz) was signifi-
cantly different between the two groups at 6 months 
(HR-ASD: mean 0.815 ± 0.08; HR-noASD: mean 0.76 
± 0.037; p < 0.0025). In contrast, at 12 months of age, 
the mean values measured for seven of the 20 features 
most commonly chosen across iterations were signifi-
cantly different between groups such that HR-ASD 
infants had consistently higher values for each of these 
features than HR-noASD infants. Significant features 

across model iterations were also those that were most 
often chosen during feature selection (Fig. 2E): Lyapu-
nov exponent, Hurst exponent, sample entropy, and 
power. Lempel-Ziv complexity was the only measure 
selected in all iterations that was not significantly dif-
ferent between groups after Bonferroni correction.

Autism prediction at 12 months: full sample
We next evaluated the diagnosis prediction accuracy 
using all available 12-month participants and found a 
considerable decrease in almost all evaluation metrics 
(Table S2), including the combination of Pearson cor-
relation coefficient feature selection and SVM classi-
fier which dropped from 100 to 7% accuracy when the 
sample was expanded. Only one of the 12 classifica-
tion schemes—F test feature selection with SVM algo-
rithm—resulted in accuracy marginally above chance 
(61.2%) at the severe expense of sensitivity (3.7%), the 
measure evaluating the percentage of infants with ASD 
who were predicted correctly.

Given this discrepancy, we assessed whether there 
were behavioral differences in the HR-ASD par-
ticipants between full and matched 12-month sam-
ples that could provide possible explanation for the 
differences in brain-based classification accuracy 
(Table  4). We found that 12-month-old participants 
who also participated at the 6-month timepoint had 
significantly lower severity scores on the 36-month 

Table 2  Descriptions of measures

Abbreviation Description

Nonlinear variables
  NOLDS software package [49]

    Detrended fluctuation analysis DFA Long-range correlation of the physiological time series

    Sample entropy SampE Irregularity of physiological time series without self-matches

    Hurst exponent HurstE Long-term memory processes of a time series

    Lyapunov exponent LyapE Chaotic or periodic properties of a time series

  EntroPy (https://github.com/raphaelvallat/entropy)
    Permutation entropy PermE Information content of a given time series based on probability distribu‑

tion of a set of continuous points

    Spectral entropy SpecE Degree of skewness in the frequency distribution

    Singular value decomposition entropy SVDE Dimensionality of a time series.

    Approximate entropy AppE Regularity of times series fluctuations

    Higuchi fractal dimension HFD Self-similarity in time series using increasingly distanced samples in time

    Katz fractal dimension KFD Complexity and self-similarity in time series using consecutive time points

  Lempel-Ziv complexity reference [50]

    Lempel Ziv complexity LZC Randomness of finite sequences

Linear variable
  SciPy signal processing [51]

    Power Power Frequency amplitude of oscillations in a time series

https://github.com/raphaelvallat/entropy
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ADOS compared to 12-month-old participants who 
only contributed data at the 12-month timepoint. 
Additionally, features that were significantly differ-
ent between 12-month HR-noASD and longitudinal 
HR-ASD participants poorly discriminated between 
HR-noASD and cross sectional HR-ASD participants 
(Fig. 3).

Discussion
This study evaluated multiple classification schemes to 
predict ASD diagnosis in high-familial risk infants using 
language-task EEG data. Specifically, EEG was evaluated 

at 6 or 12 months of age, timepoints that span a criti-
cal early language-learning period in development. One 
hundred percent diagnostic classification accuracy was 
achieved using the Pearson correlation coefficient feature 
selection with the SVM classifier regardless of whether 
infants were within the critical period of language pho-
neme learning (6 months) or after (12 months). How-
ever, the features selected to achieve the 100% prediction 
rate differed between the two ages both in measure 
type and spatial distribution. Importantly, overall per-
formance across models tested was highly variable and 
notably reduced when the sample demographics and size 

Fig. 2  Information about features most correlated with autism diagnostic outcome for nearly overlapping 6- and 12-month analyses (n = 54). The 
bottom row visualizes the values for the 12-month dataset (middle row) minus the 6-month dataset (top row). A, D, G Average number of features 
selected from each channel. Color indicates number of features selected from a given channel. B, E, H Average count of each EEG measure across 
iterations (orange) and percentage of iterations that each measure was selected at least once (blue). C, F, I Average count of each wavelet across 
iterations (orange) and percentage of iterations that each wavelet was selected at least once (blue)
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changed. Although we used robust statistical methods 
to limit overfitting in small samples, these constrained 
models may be unable to fit the variability present in 

ASD. The implications of these results in the search for 
early neuroimaging biomarkers of ASD diagnosis are dis-
cussed below.

Table 3  Descriptions of the 20 most frequently selected features using the Pearson correlation coefficient features selection method. 
Scale in the frequency band feature category refers to the level of coarse-graining procedure (further described in the “Methods” 
section). Significance evaluated with paired sample t test corrected for 20 comparisons. Parameters that survived Bonferroni correction 
are in bold

Feature HR-ASD (mean ± std) HR-noASD (mean ± std) p value % 
Iterations 
selectedChannel Frequency Measure

6-month dataset F3 1‑3.9 Hz AppE 0.815 ± 0.08 0.76 ± 0.037 < 0.0025 100
C3 1‑3.9 Hz Power 0.038 ± 0.019 0.025 ± 0.012 < 0.05 100

C3 7.8‑15.6 Hz AppE 1.145 ± 0.035 1.115 ± 0.033 < 0.05 100

Fz 15.6‑31.2 Hz Power 0.018 ± 0.008 0.013 ± 0.006 < 0.05 100

Fz 3.9‑7.8 Hz Power 0.017 ± 0.007 0.012 ± 0.005 < 0.01 100

Pz 15.6‑31.2 Hz Power 0.029 ± 0.016 0.02 ± 0.009 < 0.01 100

C3 3.9‑7.8 Hz Power 0.026 ± 0.013 0.018 ± 0.009 < 0.05 98.1

F3 7.8‑15.6 Hz LZW 1.59 ± 0.027 1.563 ± 0.036 < 0.05 98.1

Fz 1‑3.9 Hz Power 0.032 ± 0.017 0.022 ± 0.01 < 0.05 98.1

Fz 7.8‑15.6 Hz Power 0.014 ± 0.007 0.01 ± 0.004 < 0.05 98.1

Pz 31.2‑62.2 Hz Power 0.028 ± 0.014 0.019 ± 0.009 < 0.01 98.1

Pz 7.8‑15.6 Hz Power 0.026 ± 0.017 0.017 ± 0.007 < 0.01 98.1

C3 7.8‑15.6 Hz Power 0.022 ± 0.01 0.016 ± 0.007 < 0.05 96.3

F3 7.8‑15.6 Hz PermE 2.575 ± 0.007 2.566 ± 0.012 < 0.05 96.3

O1 62.5‑100 Hz HurstE 0.137 ± 0.027 0.117 ± 0.025 < 0.05 92.6

Pz 3.9‑7.8 Hz Power 0.032 ± 0.016 0.023 ± 0.01 < 0.05 92.6

Fz 31.2‑62.2 Hz Power 0.018 ± 0.014 0.011 ± 0.006 < 0.05 90.7

F8 3.9‑7.8 Hz AppE 0.795 ± 0.038 0.763 ± 0.048 < 0.05 50

FP1 1‑31.2 Hz (scale 3) MSE 2.158 ± 0.058 2.11 ± 0.072 < 0.05 48.1

FP1 1‑15.6 Hz (scale 4) MSE 2.135 ± 0.085 2.084 ± 0.068 < 0.05 48.1

Matching 12-month dataset F7 7.8‑15.6 Hz Power 0.031 ± 0.015 0.02 ± 0.008 < 0.001 100
F7 3.9‑7.8 Hz Power 0.044 ± 0.028 0.022 ± 0.011 < 0.001 100
F7 1‑3.9 Hz Power 0.07 ± 0.055 0.032 ± 0.015 < 0.001 100
T3 1‑3.9 Hz Power 0.107 ± 0.085 0.049 ± 0.033 < 0.001 100
Pz 31.2‑62.2 Hz HurstE 0.49 ± 0.06 0.418 ± 0.052 < 0.001 100
F4 62.5‑100 Hz LyapE 0.119 ± 0.009 0.112 ± 0.006 < 0.0025 100
O1 15.6‑31.2 Hz SampE 2.2 ± 0.038 2.139 ± 0.065 < 0.0025 100
F8 62.5‑100 Hz LyapE 0.116 ± 0.007 0.111 ± 0.005 < 0.01 100

Fz 15.6‑31.2 Hz LZC 1.547 ± 0.021 1.53 ± 0.017 < 0.01 100

F7 31.2‑62.2 Hz Power 0.039 ± 0.028 0.023 ± 0.013 < 0.01 98.1

F7 15.6‑31.2 Hz Power 0.037 ± 0.019 0.024 ± 0.014 < 0.01 98.1

Fz 7.8‑15.6 Hz LyapE 0.049 ± 0.006 0.043 ± 0.008 < 0.01 98.1

O2 3.9‑7.8 Hz HurstE 0.563 ± 0.102 0.475 ± 0.098 < 0.01 98.1

T3 3.9‑7.8 Hz Power 0.064 ± 0.049 0.036 ± 0.024 < 0.01 98.1

T5 1‑3.9 Hz LyapE 0.04 ± 0.008 0.031 ± 0.011 < 0.01 98.1

O1 15.6‑31.2 Hz AppE 1.469 ± 0.029 1.448 ± 0.024 < 0.01 94.4

P3 15.6‑31.2 Hz LyapE 0.054 ± 0.005 0.049 ± 0.006 < 0.05 83.3

F7 15.6‑31.2 Hz PermE 2.583 ± 0.002 2.58 ± 0.004 < 0.05 81.5

T6 3.9‑7.8 Hz HurstE 0.539 ± 0.101 0.453 ± 0.115 < 0.05 53.7

Pz 31.2‑62.2 Hz SVDE 1.564 ± 0.017 1.546 ± 0.026 < 0.05 44.4
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Developmental shift in predictive features
The longitudinal nature of the study provides the oppor-
tunity to assess whether predictive EEG features change 
across the course of a language-learning critical period 
over the first year of life. Several differences were identi-
fied. At 6 months, power from frequencies below 16 Hz 
dominated as the most common measures selected; in 
contrast, at 12 months, additional nonlinear measures 
were more consistently selected with a shift toward high 
frequencies, suggesting that nonlinear measures of high 
frequency signal better define binary ASD diagnostic 
outcomes based on language task EEG at 1 year of life. 
This trend is consistent with previous longitudinal stud-
ies that observe power differences between high- and 
low-risk infants emerging before 6 months but often dis-
sipating by 12 months [9, 11, 14]. While power was the 
most common feature type selected at 6-months, few 
features were statistically different between HR-noASD 
and HR-ASD groups at this age after correcting for mul-
tiple comparisons. In contrast, at 12 months, significant 
differences between outcome groups were identified in 7 
of the 20 most common features (Table 3). This suggests 
that different classification strategies are utilized at the 
two ages, with a combination of different power features 
taken together at 6 months and independent contribu-
tions of a range of power and nonlinear features at 12 
months. McIntosh and colleagues previously used EEG 
to demonstrate that neural variability (measured with 
entropy) increases with neurodevelopment [53]. There-
fore, the inclusion of more nonlinear measures versus 
power at 12 months compared to 6 months in the present 
study may indicate that these novel measures are more 
attuned to capturing variability inherent to development 
at the end of the first year of life, in line with previous 
research. Additionally, over the first year of life, the bal-
ance between excitation and inhibition in neural circuitry 
changes profoundly, so the sensitivity of entropy to exci-
tation/inhibition dynamics [34] may advocate for their 

relevance in early-life development, consistent with the 
successful classification results dependent on entropy 
and other nonlinear measures.

We also observed differences between developmental 
time points topographically, with a shift leftwards from 
central-midline locations, including increased involvement 
of the temporal and lateral frontal scalp sites at 12 months 
(Fig. 2G). Power measures computed from the left-frontal 
F7 channel were particularly predictive as F7 power from 
all five frequency ranges was identified as 5 of the 20 most 
commonly selected features at 12 months (Table 3), and F7 
power between 1 and 15.6 Hz was significantly increased 
in the HR-ASD group compared to HR-noASD. This shift 
may indicate that infants who are later diagnosed with 
ASD show atypical activity in the network of left-lateral-
ized regions involved in typical language perception by 
12 months of age [54–58]. Our EEG-related findings cor-
roborate MRI findings of atypical activation related to pas-
sive auditory stimuli in adults and children with ASD over 
similar cortical areas [59, 60]. The window between 6 and 
12 months is especially important for developing language 
ability, and the observed shift in the scalp sites included 
in successful prediction of ASD mirrors the developmen-
tal shifts in neural circuitry for language processing with 
development (e.g., left lateralization).

Variable classification performance
Our evaluation of machine learning models identified 
a single model with high accuracy for matched 6- and 
12-month datasets. However, the nested leave-one-out 
cross validation results varied greatly across different fea-
ture selection method and machine learning algorithm 
combinations. Performance variability may be attributed 
to the small size of the datasets, which risk overfitting 
or underfitting to the training data despite our efforts 
to minimize the dimensionality of the data before clas-
sification. Similarly sized studies using MRI data have 

Table 4  Behavioral assessments of 12-month HR-ASD group by participation timepoints. P value of t test comparing scores of each 
behavioral assessment between the matching and nonmatching 12-month HR-ASD infants (significant p value is emboldened). ADOS 
Autism Diagnostic Observation Schedule, MSEL Mullen Scales of Early Learning

Full HR-ASD Matching HR-ASD Nonmatching HR-ASD p value

Behavioral assessments (mean ± SD (n))

  ADOS

    24-month severity score 4.81 ± 2.5 (25) 4.21 ± 2.29 (14) 5.81 ± 2.79 (11) 0.15

    36-month severity score 4.9 ± 2.19 (23) 3.85 ± 1.68 (13) 6.3 ± 2.93 (10) 0.006
12-month MSEL n = 27 n = 14 n = 13

  Composite scaled score 99.0 ± 15.0 102.9 ± 13.3 94.8 ± 16.0 0.16

  Verbal developmental quotient 90.0 ± 20.5 93.1 ± 20.4 86.7 ± 21.0 0.43

  Non-verbal developmental quotient 116.7 ± 13.4 121 ± 12.1 112 ± 13.7 0.08
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previously demonstrated sensitivity lower than 90% with 
near-perfect specificity [7, 8]. These other studies only 
presented results from a single classification scheme, so 
the variability across classification schemes for MRI data 
is unknown.

The decrease in accuracy from 100% with the matched 
12-month dataset to 7% with the full 12-month dataset 
using a SVM classifier suggests an inability to effectively 

separate the two diagnostic outcome classes after the 
HR-ASD group was expanded. Behavioral pheno-
types of the HR-ASD infants added to complete the full 
12-month analysis were more variable and severe than 
those who participated at both ages. It is possible that 
enrollment bias influenced the sample characteristics in 
that high-risk families enrolling at a later age may have 
had increased concerns about ASD related to observed 

Fig. 3  Feature distributions for features most significantly different between the longitudinal 12-month classification analyses (n = 54). Features are 
listed and emboldened in Table 3. Kernel density estimates are color coded by group: blue for HR-noASD (n = 40); orange for longitudinal HR-ASD 
(n = 14); and green for cross sectional HR-ASD (n = 13)
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symptoms. We postulate that the inclusion of more HR-
ASD samples that had more similar feature distributions 
to the HR-noASD group resulted in increased feature 
overlap across outcome classes, preventing accurate 
hyperboundary separation (Fig.  3). It may also be that 
additional HR-ASD samples increased the heterogene-
ity of that group, essentially creating a continuum distri-
bution of features across both groups. The result would 
be the same: A discriminating hyperboundary between 
groups would be difficult to find. Our 12-month results 
also suggest that more complex modeling will be required 
at this age to appropriately account for the full range of 
heterogeneity in ASD at the brain and behavioral levels. 
Simpler classification approaches might still perform well 
with an increased 6-month sample size if EEG measures 
tend to be less variable and better stratified between the 
ASD diagnostic outcomes at this younger age.

The effect of heterogeneity and sample size on prediction
Autism is a heterogeneous disorder—its defining catego-
ries are broad and encompass a spectrum of symptom 
severity. Our observed decline in classification accuracy 
with increased sample size and important shifts in sam-
ple phenotypes (including ADOS severity) highlights 
factors that must be considered by the greater autism 
research community for future diagnosis prediction 
efforts. This within-study classification distinction serves 
as a case study of poor generalizability to a larger sample.

The HR-ASD infants who participated in both 6- and 
12-month timepoints had significantly different ADOS 
severity scores at 36 months than the HR-ASD infants 
who joined the study at 12 months. On all five behav-
ioral measures evaluated in Table 4, the 12-month-only 
HR-ASD group had higher ADOS scores and lower 
MSEL scores (corresponding to overall lower indexes 
of development). We hypothesize that the inclusion of 
a more severe and variable dataset reduced the accu-
racy of classification since we were predicting ASD as 
a binary diagnosis. Using resting-state EEG from the 
same infant-sibling dataset in this analysis, we have 
previously observed a similar lower accuracy in a 
12-month sample, although a similar size sample at 9 
months had high accuracy. As discussed in our previ-
ous paper, this may be a real neurodevelopmental trend 
reflecting the cross-over of neurodevelopmental trajec-
tories of infants who do and do not go on to develop 
ASD [15, 16]. Alternatively, this finding may corre-
spond with previous meta-analyses of brain-disorder 
prediction field that have found decreasing accuracies 
reported as sample sizes—and, importantly, heteroge-
neity within the sample—increase [61–63]. Overall, 
more sample data are needed in order to more com-
pletely represent the brain activity differences that arise 

in ASD, which would also permit the use of more com-
plex models that may more appropriately account for 
the variability and complex associations between brain 
activity and diagnosis.

Limitations and future directions
We acknowledge several limitations of the current 
study in addition to the discussed challenges of sam-
ple size and heterogeneity. First, our focus on infants 
with familial risk of autism may not generalize to 
other ASD-risk groups or to the general population. 
Second, the specificity of our findings to ASD (versus 
other comorbid conditions) is unknown. Further test-
ing across clinical populations (e.g., global develop-
mental delay without ASD or isolated language delay) is 
needed to understand whether EEG could also be used 
to predict comorbidities with significant impact on 
functional outcomes. This study determines ASD out-
come at age 3, which is appropriate for assessing ASD 
but not for many other developmental conditions that 
emerge across early childhood. Therefore, questions 
about comorbidity call for the extension of longitudinal 
studies to track participants beyond 3 years to capture 
a more complete clinical description of participants. 
Third, our sample was not diverse ethnically, racially, 
or in income level. Predictive analyses require not only 
large sample sizes but also must include infants from 
diverse populations in order to improve clinical appli-
cability to the general population. These results suggest 
that collaboration across samples is critical to moving 
forward in developing early predictive models.

Future studies of early predictive markers of ASD and 
other neurodevelopmental disorders need to be acutely 
aware of participant age, given the dramatic develop-
mental changes in predictive feature profiles over the 
6-month age window in the study. Moreover, given 
the variability of behavioral measures within the ASD 
outcome group, future studies should consider distin-
guishing different subpopulations of ASD grouped by 
biological presentations or phenotype profiles at the 
behavioral level as opposed to only binary diagnosis.

Conclusions
These results demonstrate that speech processing EEG 
measures may facilitate earlier identification of ASD. 
However, different nonlinear and power measures were 
predictive of ASD outcomes depending on developmen-
tal age with respect to early language learning. Overall, 
these findings emphasize the need for age-specific pre-
dictive models with large sample sizes and the challenge 
of discriminating diagnostic differences in highly hetero-
geneous populations.
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