Jones KL, Smith DW, Ulleland CN, Streissguth P. Pattern of malformation in offspring of chronic alcoholic mothers. Lancet. 1973;1(7815):1267–71.
Article
CAS
PubMed
Google Scholar
Lemoine P, Harousseau, H., Borteyru, J.P., Menuet, J.C., 1968. Les enfants des parents alcoholiques; anomalies observees a propos de 127 cas. Quest Medical. 1968;25:476-82.
Goulden KJ. Are FASD guidelines practical and sustainable? CMAJ. 2005;173(9):1070; author reply -1.
Viljoen DL, Gossage JP, Brooke L, Adnams CM, Jones KL, Robinson LK, et al. Fetal alcohol syndrome epidemiology in a South African community: a second study of a very high prevalence area. J Stud Alcohol. 2005;66(5):593–604.
Article
PubMed
PubMed Central
Google Scholar
Streissguth AP, Dehaene P. Fetal alcohol syndrome in twins of alcoholic mothers: concordance of diagnosis and IQ. Am J Med Genet. 1993;47(6):857–61.
Article
CAS
PubMed
Google Scholar
Warren KR, Li TK. Genetic polymorphisms: impact on the risk of fetal alcohol spectrum disorders. Birth Defects Res A Clin Mol Teratol. 2005;73(4):195–203.
Article
CAS
PubMed
Google Scholar
Goodlett CR, Gilliam DM, Nichols JM, West JR. Genetic influences on brain growth restriction induced by development exposure to alcohol. Neurotoxicology. 1989;10(3):321–34.
CAS
PubMed
Google Scholar
Gilliam DM, Kotch LE. Dose-related growth deficits in LS but not SS mice prenatally exposed to alcohol. Alcohol. 1996;13(1):47–51.
Article
CAS
PubMed
Google Scholar
Hard ML, Abdolell M, Robinson BH, Koren G. Gene-expression analysis after alcohol exposure in the developing mouse. J Lab Clin Med. 2005;145(1):47–54.
Article
CAS
PubMed
Google Scholar
Zhang C, Frazier JM, Chen H, Liu Y, Lee JA, Cole GJ. Molecular and morphological changes in zebrafish following transient ethanol exposure during defined developmental stages. Neurotoxicol Teratol. 2014;44:70–80.
Article
CAS
PubMed
PubMed Central
Google Scholar
El Shawa H, Abbott CW 3rd, Huffman KJ. Prenatal ethanol exposure disrupts intraneocortical circuitry, cortical gene expression, and behavior in a mouse model of FASD. J Neurosci. 2013;33(48):18893–905.
Article
PubMed
PubMed Central
Google Scholar
Stringer RL, Laufer BI, Kleiber ML, Singh SM. Reduced expression of brain cannabinoid receptor 1 (Cnr1) is coupled with an increased complementary micro-RNA (miR-26b) in a mouse model of fetal alcohol spectrum disorders. Clin Epigenetics. 2013;5(1):14.
Article
PubMed
PubMed Central
Google Scholar
Kleiber ML, Laufer BI, Wright E, Diehl EJ, Singh SM. Long-term alterations to the brain transcriptome in a maternal voluntary consumption model of fetal alcohol spectrum disorders. Brain research. 2012;1458:18–33.
Article
CAS
PubMed
Google Scholar
Downing C, Flink S, Florez-McClure ML, Johnson TE, Tabakoff B, Kechris KJ. Gene expression changes in C57BL/6J and DBA/2J mice following prenatal alcohol exposure. Alcohol Clin Exp Res. 2012;36(9):1519–29.
Article
CAS
PubMed
PubMed Central
Google Scholar
Green ML, Singh AV, Zhang Y, Nemeth KA, Sulik KK, Knudsen TB. Reprogramming of genetic networks during initiation of the Fetal Alcohol Syndrome. Dev Dyn. 2007;236(2):613–31.
Article
CAS
PubMed
Google Scholar
Hashimoto-Torii K, Kawasawa YI, Kuhn A, Rakic P. Combined transcriptome analysis of fetal human and mouse cerebral cortex exposed to alcohol. Proc Natl Acad Sci U S A. 2011;108(10):4212–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kimura KA, Chiu J, Reynolds JN, Brien JF. Effect of chronic prenatal ethanol exposure on nitric oxide synthase I and III proteins in the hippocampus of the near-term fetal guinea pig. Neurotoxicol Teratol. 1999;21(3):251–9.
Article
CAS
PubMed
Google Scholar
Mandal C, Park KS, Jung KH, Chai YG. Ethanol-related alterations in gene expression patterns in the developing murine hippocampus. Acta Biochim Biophys Sin (Shanghai). 2015;47(8):581–7.
Article
CAS
PubMed
Google Scholar
Lunde-Young R, Ramirez J, Naik V, Orzabal M, Lee J, Konganti K, et al. Hippocampal transcriptome reveals novel targets of FASD pathogenesis. Brain Behav. 2019;9(7):e01334.
Article
PubMed
PubMed Central
Google Scholar
Alberry BLJ, Castellani CA, Singh SM. Hippocampal transcriptome analysis following maternal separation implicates altered RNA processing in a mouse model of fetal alcohol spectrum disorder. J Neurodev Disord. 2020;12(1):15.
Article
PubMed
PubMed Central
Google Scholar
Ehrhart F, Roozen S, Verbeek J, Koek G, Kok G, van Kranen H, et al. Review and gap analysis: molecular pathways leading to fetal alcohol spectrum disorders. Mol Psychiatry. 2019;24(1):10–7.
Article
CAS
PubMed
Google Scholar
Howard RJ, Slesinger PA, Davies DL, Das J, Trudell JR, Harris RA. Alcohol-binding sites in distinct brain proteins: the quest for atomic level resolution. Alcohol Clin Exp Res. 2011;35(9):1561–73.
CAS
PubMed
PubMed Central
Google Scholar
Freund G. Neurobiological relationships between aging and alcohol abuse. Recent Dev Alcohol. 1984;2:203–21.
Article
CAS
PubMed
Google Scholar
Korbo L. Glial cell loss in the hippocampus of alcoholics. Alcohol Clin Exp Res. 1999;23(1):164–8.
Article
CAS
PubMed
Google Scholar
White AM, Swartzwelder HS. Hippocampal function during adolescence: a unique target of ethanol effects. Annals of the New York Academy of Sciences. 2004;1021:206–20.
Article
CAS
PubMed
Google Scholar
Medina KL, Schweinsburg AD, Cohen-Zion M, Nagel BJ, Tapert SF. Effects of alcohol and combined marijuana and alcohol use during adolescence on hippocampal volume and asymmetry. Neurotoxicol Teratol. 2007;29(1):141–52.
Article
CAS
PubMed
Google Scholar
Nagel BJ, Schweinsburg AD, Phan V, Tapert SF. Reduced hippocampal volume among adolescents with alcohol use disorders without psychiatric comorbidity. Psychiatry research. 2005;139(3):181–90.
Article
PubMed
PubMed Central
Google Scholar
Morris SA, Eaves DW, Smith AR, Nixon K. Alcohol inhibition of neurogenesis: a mechanism of hippocampal neurodegeneration in an adolescent alcohol abuse model. Hippocampus. 2010;20(5):596–607.
CAS
PubMed
PubMed Central
Google Scholar
Livy DJ, Miller EK, Maier SE, West JR. Fetal alcohol exposure and temporal vulnerability: effects of binge-like alcohol exposure on the developing rat hippocampus. Neurotoxicol Teratol. 2003;25(4):447–58.
Article
CAS
PubMed
Google Scholar
Barnes DE, Walker DW. Prenatal ethanol exposure permanently reduces the number of pyramidal neurons in rat hippocampus. Brain research. 1981;227(3):333–40.
Article
CAS
PubMed
Google Scholar
McGoey TN, Reynolds JN, Brien JF. Chronic prenatal ethanol exposure-induced decrease of guinea pig hippocampal CA1 pyramidal cell and cerebellar Purkinje cell density. Can J Physiol Pharmacol. 2003;81(5):476–84.
Article
CAS
PubMed
Google Scholar
Burke MW, Ptito M, Ervin FR, Palmour RM. Hippocampal neuron populations are reduced in vervet monkeys with fetal alcohol exposure. Dev Psychobiol. 2015;57(4):470–85.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lee AG, Hagenauer M, Absher D, Morrison KE, Bale TL, Myers RM, et al. Stress amplifies sex differences in primate prefrontal profiles of gene expression. Biol Sex Differ. 2017;8(1):36.
Article
PubMed
PubMed Central
Google Scholar
Palmour RM, Mulligan J, Howbert JJ, Ervin F. Of monkeys and men: vervets and the genetics of human-like behaviors. Am J Human Genetics. 1997;61(3):481–8.
Article
CAS
Google Scholar
Labonte B, Engmann O, Purushothaman I, Menard C, Wang J, Tan C, et al. Sex-specific transcriptional signatures in human depression. Nat Med. 2017;23(9):1102–11.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ervin FR, Palmour RM, Young SN, Guzman-Flores C, Juarez J. Voluntary consumption of beverage alcohol by vervet monkeys: population screening, descriptive behavior and biochemical measures. Pharmacol Biochem Behav. 1990;36(2):367–73.
Article
CAS
PubMed
Google Scholar
Palmour RM, Ervin FR, Baker GB, Young SN. An amino acid mixture deficient in phenylalanine and tyrosine reduces cerebrospinal fluid catecholamine metabolites and alcohol consumption in vervet monkeys. Psychopharmacology (Berl). 1998;136(1):1–7.
Article
CAS
PubMed
Google Scholar
Association AVM. AVMA Guidelines for the Euthanasia of Animals. Schaumber, Il2013.
Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, Dudoit S, et al. Bioconductor: open software development for computational biology and bioinformatics. Genome Biol. 2004;5(10):R80.
Article
PubMed
PubMed Central
Google Scholar
Irizarry RA, Hobbs B, Collin F, Beazer-Barclay YD, Antonellis KJ, Scherf U, et al. Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics. 2003;4(2):249–64.
Article
PubMed
Google Scholar
Blazejczyk M, Nadon. FlexArray: A statistical data analysis software for gene expression microarrays. 2007.
Liu WM, Mei R, Di X, Ryder TB, Hubbell E, Dee S, et al. Analysis of high density expression microarrays with signed-rank call algorithms. Bioinformatics. 2002;18(12):1593–9.
Article
CAS
PubMed
Google Scholar
Stalteri MA, Harrison AP. Interpretation of multiple probe sets mapping to the same gene in Affymetrix GeneChips. BMC Bioinformatics. 2007;8:13.
Article
PubMed
PubMed Central
Google Scholar
Miron M, Nadon R. Inferential literacy for experimental high-throughput biology. Trends Genet. 2006;22(2):84–9.
Article
CAS
PubMed
Google Scholar
Storey JD. A direct approach to false discovery rates. J Roy Stat Soc B. 2002;64:479–98.
Article
Google Scholar
Chen X, Robinson DG, Storey JD. The functional false discovery rate with applications to genomics. Biostatistics. 2021;22(1):68–81.
Article
PubMed
Google Scholar
Rogic S, Wong A, Pavlidis P. Meta-analysis of gene expression patterns in animal models of prenatal alcohol exposure suggests role for protein synthesis inhibition and chromatin remodeling. Alcohol Clin Exp Res. 2016;40(4):717–27.
Article
CAS
PubMed
PubMed Central
Google Scholar
Garro AJ, McBeth DL, Lima V, Lieber CS. Ethanol consumption inhibits fetal DNA methylation in mice: implications for the fetal alcohol syndrome. Alcohol Clin Exp Res. 1991;15(3):395–8.
Article
CAS
PubMed
Google Scholar
Laufer BI, Mantha K, Kleiber ML, Diehl EJ, Addison SM, Singh SM. Long-lasting alterations to DNA methylation and ncRNAs could underlie the effects of fetal alcohol exposure in mice. Disease Models Mechanisms. 2013;6(4):977–92.
CAS
PubMed
PubMed Central
Google Scholar
Liu Y, Balaraman Y, Wang G, Nephew KP, Zhou FC. Alcohol exposure alters DNA methylation profiles in mouse embryos at early neurulation. Epigenetics. 2009;4(7):500–11.
Article
CAS
PubMed
Google Scholar
Portales-Casamar E, Lussier AA, Jones MJ, MacIsaac JL, Edgar RD, Mah SM, et al. DNA methylation signature of human fetal alcohol spectrum disorder. Epigenetics Chromatin. 2016;9:25.
Article
PubMed
PubMed Central
Google Scholar
Balaraman S, Tingling JD, Tsai PC, Miranda RC. Dysregulation of microRNA expression and function contributes to the etiology of fetal alcohol spectrum disorders. Alcohol Res: Current Reviews. 2013;35(1):18–24.
Google Scholar
Morey JS, Ryan JC, Van Dolah FM. Microarray validation: factors influencing correlation between oligonucleotide microarrays and real-time PCR. Biological Procedures Online. 2006;8:175–93.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wurmbach E, Yuen T, Sealfon SC. Focused microarray analysis. Methods. 2003;31(4):306–16.
Article
CAS
PubMed
Google Scholar
Etienne W, Meyer MH, Peppers J, Meyer RA Jr. Comparison of mRNA gene expression by RT-PCR and DNA microarray. Biotechniques. 2004;36(4):618 -20, 22, 24-6.
Article
CAS
PubMed
Google Scholar
Rajeevan MS, Vernon SD, Taysavang N, Unger ER. Validation of array-based gene expression profiles by real-time (kinetic) RT-PCR. J Molecular Diagnostics : JMD. 2001;3(1):26–31.
Article
CAS
Google Scholar
Bruckner K, Pasquale EB, Klein R. Tyrosine phosphorylation of transmembrane ligands for Eph receptors. Science. 1997;275(5306):1640–3.
Article
CAS
PubMed
Google Scholar
Wilkinson DG. Multiple roles of EPH receptors and ephrins in neural development. Nature Reviews Neurosci. 2001;2(3):155–64.
Article
CAS
Google Scholar
Palmer A, Zimmer M, Erdmann KS, Eulenburg V, Porthin A, Heumann R, et al. EphrinB phosphorylation and reverse signaling: regulation by Src kinases and PTP-BL phosphatase. Molecular cell. 2002;9(4):725–37.
Article
CAS
PubMed
Google Scholar
Beckmann MP, Cerretti DP, Baum P, Vanden Bos T, James L, Farrah T, et al. Molecular characterization of a family of ligands for eph-related tyrosine kinase receptors. EMBO J. 1994;13(16):3757–62.
Article
CAS
PubMed
PubMed Central
Google Scholar
Davis S, Gale NW, Aldrich TH, Maisonpierre PC, Lhotak V, Pawson T, et al. Ligands for EPH-related receptor tyrosine kinases that require membrane attachment or clustering for activity. Science. 1994;266(5186):816–9.
Article
CAS
PubMed
Google Scholar
Klein R. Eph/ephrin signaling in morphogenesis, neural development and plasticity. Current Opinion Cell Biol. 2004;16(5):580–9.
Article
CAS
PubMed
Google Scholar
Bush JO, Soriano P. Ephrin-B1 regulates axon guidance by reverse signaling through a PDZ-dependent mechanism. Genes Development. 2009;23(13):1586–99.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nguyen AQ, Sutley S, Koeppen J, Mina K, Woodruff S, Hanna S, et al. Astrocytic Ephrin-B1 Controls Excitatory-Inhibitory Balance in Developing Hippocampus. J Neurosci. 2020;40(36):6854–71.
Article
CAS
PubMed
PubMed Central
Google Scholar
Koeppen J, Nguyen AQ, Nikolakopoulou AM, Garcia M, Hanna S, Woodruff S, et al. Functional Consequences of Synapse Remodeling Following Astrocyte-Specific Regulation of Ephrin-B1 in the Adult Hippocampus. J Neuroscience. 2018;38(25):5710–26.
Article
CAS
Google Scholar
Wieland I, Jakubiczka S, Muschke P, Cohen M, Thiele H, Gerlach KL, et al. Mutations of the ephrin-B1 gene cause craniofrontonasal syndrome. Am J Human Genetics. 2004;74(6):1209–15.
Article
CAS
Google Scholar
Wieland I, Weidner C, Ciccone R, Lapi E, McDonald-McGinn D, Kress W, et al. Contiguous gene deletions involving EFNB1, OPHN1, PJA1 and EDA in patients with craniofrontonasal syndrome. Clinical Genetics. 2007;72(6):506–16.
Article
CAS
PubMed
Google Scholar
Wallis D, Lacbawan F, Jain M, Der Kaloustian VM, Steiner CE, Moeschler JB, et al. Additional EFNB1 mutations in craniofrontonasal syndrome. Am J Med Genetics Part A. 2008;146A(15):2008–12.
Article
CAS
Google Scholar
Twigg SR, Kan R, Babbs C, Bochukova EG, Robertson SP, Wall SA, et al. Mutations of ephrin-B1 (EFNB1), a marker of tissue boundary formation, cause craniofrontonasal syndrome. Proc Natl Acad Sci U S A. 2004;101(23):8652–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kapusta L, Brunner HG, Hamel BC. Craniofrontonasal dysplasia. European journal of pediatrics. 1992;151(11):837–41.
Article
CAS
PubMed
Google Scholar
Goyal M, Pradhan G, Wieland I, Kapoor S. Craniofrontonasal syndrome: atrial septal defect with a novel EFNB1 gene mutation. The Cleft Palate-Craniofacial J. 2015;52(2):234–6.
Article
Google Scholar
Wieland I, Makarov R, Reardon W, Tinschert S, Goldenberg A, Thierry P, et al. Dissecting the molecular mechanisms in craniofrontonasal syndrome: differential mRNA expression of mutant EFNB1 and the cellular mosaic. Eur J Human Genet. 2008;16(2):184–91.
Article
CAS
Google Scholar
Wieacker P, Wieland I. Clinical and genetic aspects of craniofrontonasal syndrome: towards resolving a genetic paradox. Mol Genet Metab. 2005;86(1-2):110–6.
Article
CAS
PubMed
Google Scholar
Niethamer TK, Larson AR, O'Neill AK, Bershteyn M, Hsiao EC, Klein OD, et al. EPHRIN-B1 Mosaicism Drives Cell Segregation in Craniofrontonasal Syndrome hiPSC-Derived Neuroepithelial Cells. Stem Cell Reports. 2017;8(3):529–37.
Article
CAS
PubMed
PubMed Central
Google Scholar
Twigg SR, Babbs C, van den Elzen ME, Goriely A, Taylor S, McGowan SJ, et al. Cellular interference in craniofrontonasal syndrome: males mosaic for mutations in the X-linked EFNB1 gene are more severely affected than true hemizygotes. Hum Mol Genet. 2013;22(8):1654–62.
Article
CAS
PubMed
PubMed Central
Google Scholar
Babbs C, Stewart HS, Williams LJ, Connell L, Goriely A, Twigg SR, et al. Duplication of the EFNB1 gene in familial hypertelorism: imbalance in ephrin-B1 expression and abnormal phenotypes in humans and mice. Human Mutation. 2011;32(8):930–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Maier SE, West JR. Regional differences in cell loss associated with binge-like alcohol exposure during the first two trimesters equivalent in the rat. Alcohol. 2001;23(1):49–57.
Article
CAS
PubMed
Google Scholar
Idanpaan-Heikkila J, Jouppila P, Akerblom HK, Isoaho R, Kauppila E, Koivisto M. Elimination and metabolic effects of ethanol in mother, fetus, and newborn infant. Am J Obstet Gynecol. 1972;112(3):387–93.
Article
CAS
PubMed
Google Scholar
Burke MW, Palmour RM, Ervin FR, Ptito M. Neuronal reduction in frontal cortex of primates after prenatal alcohol exposure. Neuroreport. 2009;20(1):13–7.
Article
PubMed
Google Scholar