Cornman-Homonoff J, Kuehn D, Aros S, Carter TC, Conley MR, Troendle J, et al. Heavy prenatal alcohol exposure and risk of stillbirth and preterm delivery. J Matern Neonatal Med. 2012;25:860–3. https://doi.org/10.3109/14767058.2011.587559.
Article
Google Scholar
Kesmodel U, Wisborg K, Olsen SF, Henriksen TB, Secher NJ. Moderate alcohol intake in pregnancy and the risk of spontaneous abortion. Alcohol Alcohol. 2002;37:87–92. https://doi.org/10.1093/alcalc/37.1.87.
Article
PubMed
Google Scholar
Sokol RJ, Janisse JJ, Louis JM, Bailey BN, Ager J, Jacobson SW, et al. Extreme prematurity: an alcohol-related birth effect. Alcohol Clin Exp Res. 2007;31:1031–7. https://doi.org/10.1111/j.1530-0277.2007.00384.x.
Article
PubMed
Google Scholar
Sabra S, Malmqvist E, Almeida L, Gratacos E, Gomez Roig MD. Differential correlations between maternal hair levels of tobacco and alcohol with fetal growth restriction clinical subtypes. Alcohol. 2018;70:43–9. https://doi.org/10.1016/j.alcohol.2018.01.001.
Article
CAS
PubMed
Google Scholar
Chudley AE, Conry J, Cook JL, Loock C, Rosales T, LeBlanc N, et al. Fetal alcohol spectrum disorder: Canadian guidelines for diagnosis. Can Med Assoc J. 2005;172(5 suppl):S1–21. https://doi.org/10.1503/cmaj.1040302.
Article
Google Scholar
Popova S, Lange S, Probst C, Gmel G, Rehm J. Global prevalence of alcohol use and binge drinking during pregnancy and fetal alcohol spectrum disorder. Biochem Cell Biol. 2017;:bcb-2017-0077. doi:https://doi.org/10.1139/bcb-2017-0077.
Popova S, Lange S, Chudley AE, Reynolds JN, Rehm J, May PA, et al. World Health Organization international study on the prevalence of fetal alcohol spectrum disorder (FASD). Cent Addit Ment Heal. 2018. www.camh.ca. Accessed 25 Apr 2019.
May PA, Chambers CD, Kalberg WO, Zellner J, Feldman H, Buckley D, et al. Prevalence of fetal alcohol spectrum disorders in 4 US communities. JAMA - J Am Med Assoc. 2018;319:474–82. https://doi.org/10.1001/jama.2017.21896.
Article
Google Scholar
Popova S, Lange S, Burd L, Rehm J. The economic burden of fetal alcohol spectrum disorder in Canada in 2013. Alcohol Alcohol. 2016;51:367–75. https://doi.org/10.1093/alcalc/agv117.
Article
PubMed
Google Scholar
Lange S, Shield K, Rehm J, Popova S. Prevalence of fetal alcohol spectrum disorders in child care settings: a meta-analysis. Pediatrics. 2013;132:e980–95.
Article
Google Scholar
Lange S, Probst C, Gmel G, Rehm J, Burd L, Popova S. Global prevalence of fetal alcohol spectrum disorder among children and youth: a systematic review and meta-analysis. JAMA Pediatr. 2017;171:948–56. https://doi.org/10.1001/jamapediatrics.2017.1919.
Article
PubMed
PubMed Central
Google Scholar
Kisely S, Abajobir AA, Mills R, Strathearn L, Clavarino A, Najman JM. Child maltreatment and mental health problems in adulthood: birth cohort study. Br J Psychiatry. 2018;213:698–703. https://doi.org/10.1192/bjp.2018.207.
Article
PubMed
Google Scholar
Pillai AG, Arp M, Velzing E, Lesuis SL, Schmidt MV, Holsboer F, et al. Early life stress determines the effects of glucocorticoids and stress on hippocampal function: electrophysiological and behavioral evidence respectively. Neuropharmacology. 2018;133:307–18. https://doi.org/10.1016/j.neuropharm.2018.02.001.
Article
CAS
PubMed
Google Scholar
Oomen CA, Soeters H, Audureau N, Vermunt L, van Hasselt FN, Manders EMM, et al. Severe early life stress hampers spatial learning and neurogenesis, but improves hippocampal synaptic plasticity and emotional learning under high-stress conditions in adulthood. J Neurosci. 2010;30:6635–45. https://doi.org/10.1523/JNEUROSCI.0247-10.2010.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rice CJ, Sandman CA, Lenjavi MR, Baram TZ. A novel mouse model for acute and long-lasting consequences of early life stress. Endocrinology. 2008;149:4892–900.
Article
CAS
Google Scholar
Hatalski CG, Brunson KL, Tantayanubutr B, Chen Y, Baram TZ. Neuronal activity and stress differentially regulate hippocampal and hypothalamic corticotropin-releasing hormone expression in the immature rat. Neuroscience. 2000;101:571–80. https://doi.org/10.1016/S0306-4522(00)00386-9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Price A, Cook PA, Norgate S, Mukherjee R. Prenatal alcohol exposure and traumatic childhood experiences: a systematic review. Neuroscience and Biobehavioral Reviews. 2017;80:89–98. https://doi.org/10.1016/j.neubiorev.2017.05.018.
Article
CAS
PubMed
Google Scholar
Coggins TE, Timler GR, Olswang LB. A state of double jeopardy: impact of prenatal alcohol exposure and adverse environments on the social communicative abilities of school-age children with fetal alcohol spectrum disorder. Lang Speech Hear Serv Sch. 2007;38:117–27. https://doi.org/10.1044/0161-1461(2007/012).
Article
PubMed
Google Scholar
Henry J, Sloane M, Black-Pond C. Neurobiology and neurodevelopmental impact of childhood traumatic stress and prenatal alcohol exposure. Lang Speech Hear Serv Sch. 2007;38:99–108. https://doi.org/10.1044/0161-1461(2007/010).
Article
PubMed
Google Scholar
Koponen AM, Kalland M, Autti-Rämö I. Caregiving environment and socio-emotional development of foster-placed FASD-children. Child Youth Serv Rev. 2009;31:1049–56. https://doi.org/10.1016/j.childyouth.2009.05.006.
Article
Google Scholar
Koponen AM, Kalland M, Autti-Rämö I, Laamanen R, Suominen S. Socio-emotional development of children with foetal alcohol spectrum disorders in long-term foster family care: a qualitative study. Nord Soc Work Res. 2013;3:38–58. https://doi.org/10.1080/2156857x.2013.766234.
Article
Google Scholar
Kleiber ML, Wright E, Singh SM. Maternal voluntary drinking in C57BL/6J mice: advancing a model for fetal alcohol spectrum disorders. Behav Brain Res. 2011;223:376–87.
Article
CAS
Google Scholar
Alberry B, Singh SM. Developmental and behavioral consequences of early life maternal separation stress in a mouse model of fetal alcohol spectrum disorder. Behav Brain Res. 2016;308:94–103. https://doi.org/10.1016/j.bbr.2016.04.031.
Article
CAS
PubMed
Google Scholar
Allan AM, Chynoweth J, Tyler LA, Caldwell KK. A mouse model of prenatal ethanol exposure using a voluntary drinking paradigm. Alcohol Clin Exp Res. 2003;27:2009–16. https://doi.org/10.1097/01.ALC.0000100940.95053.72.
Article
PubMed
Google Scholar
Kaminen-Ahola N, Ahola A, Flatscher-Bader T, Wilkins SJ, Anderson GJ, Whitelaw E, et al. Postnatal growth restriction and gene expression changes in a mouse model of fetal alcohol syndrome. Birth defects Res A, Clin Mol Teratol. 2010;88:818–26.
Article
CAS
Google Scholar
Marjonen H, Sierra A, Nyman A, Rogojin V, Gröhn O, Linden A-MM, et al. Early maternal alcohol consumption alters hippocampal DNA methylation, gene expression and volume in a mouse model. PLoS One. 2015;10:e0124931. https://doi.org/10.1371/journal.pone.0124931.
Article
CAS
PubMed
PubMed Central
Google Scholar
Romeo RD, Mueller A, Sisti HM, Ogawa S, McEwen BS, Brake WG. Anxiety and fear behaviors in adult male and female C57BL/6 mice are modulated by maternal separation. Horm Behav. 2003;43:561–7.
Article
Google Scholar
Fenoglio KA, Brunson KL, Baram TZ. Hippocampal neuroplasticity induced by early-life stress: functional and molecular aspects. Front Neuroendocrinol. 2006;27:180–92.
Article
CAS
Google Scholar
Veenema AH, Reber SO, Selch S, Obermeier F, Neumann ID. Early life stress enhances the vulnerability to chronic psychosocial stress and experimental colitis in adult mice. Endocrinology. 2008;149:2727–36. https://doi.org/10.1210/en.2007-1469.
Article
CAS
PubMed
Google Scholar
Franklin TB, Russig H, Weiss IC, Graff J, Linder N, Michalon A, et al. Epigenetic transmission of the impact of early stress across generations. Biol Psychiatry. 2010;68:408–15.
Article
Google Scholar
Chokroborty-Hoque A, Alberry B, Singh SM. Exploring the complexity of intellectual disability in fetal alcohol spectrum disorders. Front Pediatr. 2014;2 http://www.frontiersin.org/Journal/Abstract.aspx?s=166&name=child_and_neurodevelopmental_psychiatry&ART_DOI=10.3389/fped.2014.00090.
Benner S, Endo T, Endo N, Kakeyama M, Tohyama C. Early deprivation induces competitive subordinance in C57BL/6 male mice. Physiol Behav. 2014;137:42–52. https://doi.org/10.1016/j.physbeh.2014.06.018.
Article
CAS
PubMed
Google Scholar
Savignac HM, Dinan TG, Cryan JF. Resistance to early-life stress in mice: effects of genetic background and stress duration. Front Behav Neurosci. 2011;5:13. https://doi.org/10.3389/fnbeh.2011.00013.
Article
PubMed
PubMed Central
Google Scholar
Spijker S. Dissection of rodent brain regions. In: Li WWK, editor. Neuroproteomics. Humana Press; 2011. p. 13–26. doi:https://doi.org/10.1007/978-1-61779-111-6_2.
Bray NL, Pimentel H, Melsted P, Pachter L. Near-optimal probabilistic RNA-seq quantification. Nat Biotechnol. 2016;34:525–7. https://doi.org/10.1038/nbt.3519.
Article
CAS
PubMed
Google Scholar
Pimentel H, Bray NL, Puente S, Melsted P, Pachter L. Differential analysis of RNA-seq incorporating quantification uncertainty. Nat Methods. 2017;14:687–90. https://doi.org/10.1038/nmeth.4324.
Article
CAS
PubMed
Google Scholar
Yi L, Pimentel H, Bray NL, Pachter L. Gene-level differential analysis at transcript-level resolution. Genome Biol. 2018;19:53. https://doi.org/10.1186/s13059-018-1419-z.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kim D, Paggi JM, Park C, Bennett C, Salzberg SL. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat Biotechnol. 2019;37:907–15. https://doi.org/10.1038/s41587-019-0201-4.
Article
CAS
PubMed
Google Scholar
Liao Y, Smyth GK, Shi W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics. 2014;30:923–30. https://doi.org/10.1093/bioinformatics/btt656.
Article
CAS
PubMed
Google Scholar
Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550. https://doi.org/10.1186/s13059-014-0550-8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015;43:e47. https://doi.org/10.1093/nar/gkv007.
Article
CAS
PubMed
PubMed Central
Google Scholar
Smedley D, Haider S, Durinck S, Pandini L, Provero P, Allen J, et al. The BioMart community portal: an innovative alternative to large, centralized data repositories. Nucleic Acids Res. 2015;43:W589–98. https://doi.org/10.1093/nar/gkv350.
Article
CAS
PubMed
PubMed Central
Google Scholar
Langfelder P, Horvath S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics. 2008;9:559. https://doi.org/10.1186/1471-2105-9-559.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kuleshov MV, Jones MR, Rouillard AD, Fernandez NF, Duan Q, Wang Z, et al. Enrichr: a comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res. 2016;44:W90–7. https://doi.org/10.1093/nar/gkw377.
Article
CAS
PubMed
PubMed Central
Google Scholar
Heckler MM, Riggins RB. ERRβ splice variants differentially regulate cell cycle progression. Cell Cycle. 2015;14:31–45. https://doi.org/10.4161/15384101.2014.972886.
Choleris E, Thomas AW, Kavaliers M, Prato FS. A detailed ethological analysis of the mouse open field test: effects of diazepam, chlordiazepoxide and an extremely low frequency pulsed magnetic field. Neurosci Biobehav Rev. 2001;25:235–60. https://doi.org/10.1016/S0149-7634(01)00011-2.
Article
CAS
PubMed
Google Scholar
Prut L, Belzung C. The open field as a paradigm to measure the effects of drugs on anxiety-like behaviors: a review. European Journal of Pharmacology. 2003;463:3–33. https://doi.org/10.1016/S0014-2999(03)01272-X.
Article
CAS
PubMed
Google Scholar
Hill AS, Sahay A, Hen R. Increasing adult hippocampal neurogenesis is sufficient to reduce anxiety and depression-like behaviors. Neuropsychopharmacology. 2015;40:2368–78. https://doi.org/10.1038/npp.2015.85.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kreisel T, Frank MG, Licht T, Reshef R, Ben-Menachem-Zidon O, Baratta MV, et al. Dynamic microglial alterations underlie stress-induced depressive-like behavior and suppressed neurogenesis. Mol Psychiatry. 2014;19:699–709. https://doi.org/10.1038/mp.2013.155.
Article
CAS
PubMed
Google Scholar
Tynan RJ, Naicker S, Hinwood M, Nalivaiko E, Buller KM, Pow DV, et al. Chronic stress alters the density and morphology of microglia in a subset of stress-responsive brain regions. Brain Behav Immun. 2010;24:1058–68. https://doi.org/10.1016/j.bbi.2010.02.001.
Article
CAS
PubMed
Google Scholar
Lombard Z, Tiffin N, Hofmann O, Bajic VB, Hide W, Ramsay M. Computational selection and prioritization of candidate genes for Fetal Alcohol Syndrome. BMC Genomics. 2007;8:389. https://doi.org/10.1186/1471-2164-8-389.
Article
PubMed
PubMed Central
Google Scholar
Yuan F, Chen X, Liu J, Feng W, Wu X, yu CS. Up-regulation of Siah1 by ethanol triggers apoptosis in neural crest cells through p38 MAPK-mediated activation of p53 signaling pathway. Arch Toxicol. 2017;91:775–84. https://doi.org/10.1007/s00204-016-1746-3.
Article
CAS
PubMed
Google Scholar
Louis LK, Gopurappilly R, Surendran H, Dutta S, Pal R. Transcriptional profiling of human neural precursors post alcohol exposure reveals impaired neurogenesis via dysregulation of ERK signaling and miR-145. J Neurochem. 2018;146:47–62. https://doi.org/10.1111/jnc.14155.
Article
CAS
Google Scholar
Duric V, Banasr M, Licznerski P, Schmidt HD, Stockmeier CA, Simen AA, et al. A negative regulator of MAP kinase causes depressive behavior. Nat Med. 2010;16:1328–32. https://doi.org/10.1038/nm.2219.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ables JL, Breunig JJ, Eisch AJ, Rakic P. Not(ch) just development: Notch signalling in the adult brain. Nature Reviews Neuroscience. 2011;12:269–83. https://doi.org/10.1038/nrn3024.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ninh VK, El Hajj EC, Mouton AJ, Gardner JD. Prenatal alcohol exposure causes adverse cardiac extracellular matrix changes and dysfunction in neonatal mice. Cardiovasc Toxicol. 2019:1–12. https://doi.org/10.1007/s12012-018-09503-8.
Muralidharan P, Sarmah S, Marrs JA. Retinal Wnt signaling defect in a zebrafish fetal alcohol spectrum disorder model. PLoS One. 2018;13:e0201659. https://doi.org/10.1371/journal.pone.0201659.
Article
CAS
PubMed
PubMed Central
Google Scholar
Brose K, Bland KS, Kuan HW, Arnott D, Henzel W, Goodman CS, et al. Slit proteins bind robo receptors and have an evolutionarily conserved role in repulsive axon guidance. Cell. 1999;96:795–806. https://doi.org/10.1016/S0092-8674(00)80590-5.
Article
CAS
PubMed
Google Scholar
Urrutia R. KRAB-containing zinc-finger repressor proteins. Genome Biology. 2003;4:231. https://doi.org/10.1186/gb-2003-4-10-231.
Article
PubMed
PubMed Central
Google Scholar
Winckelmans E, Vrijens K, Tsamou M, Janssen BG, Saenen ND, Roels HA, et al. Newborn sex-specific transcriptome signatures and gestational exposure to fine particles: findings from the ENVIRONAGE birth cohort. Environ Heal A Glob Access Sci Source. 2017;16:52. https://doi.org/10.1186/s12940-017-0264-y.
Article
CAS
Google Scholar
Lein ES, Hawrylycz MJ, Ao N, Ayres M, Bensinger A, Bernard A, et al. Genome-wide atlas of gene expression in the adult mouse brain. Nature. 2007;445:168–76. https://doi.org/10.1038/nature05453.
Article
CAS
PubMed
Google Scholar
Rosenberg MJ, Wolff CR, El-Emawy A, Staples MC, Perrone-Bizzozero NI, Savage DD. Effects of moderate drinking during pregnancy on placental gene expression. Alcohol. 2010;44:673–90. https://doi.org/10.1016/J.ALCOHOL.2009.10.002.
Article
CAS
PubMed
PubMed Central
Google Scholar
Beech RD, Leffert JJ, Lin A, Hong KA, Hansen J, Umlauf S, et al. Stress-related alcohol consumption in heavy drinkers correlates with expression of miR-10a, miR-21, and components of the TAR-RNA-binding protein-associated complex. Alcohol Clin Exp Res. 2014;38:2743–53. https://doi.org/10.1111/acer.12549.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schneider JS, Anderson DW, Talsania K, Mettil W, Vadigepalli R. Effects of developmental lead exposure on the hippocampal transcriptome: influences of sex, developmental period, and lead exposure level. Toxicol Sci. 2012;129:108–25. https://doi.org/10.1093/toxsci/kfs189.
Article
CAS
PubMed
PubMed Central
Google Scholar
Stankiewicz AM, Goscik J, Swiergiel AH, Majewska A, Wieczorek M, Juszczak GR, et al. Social stress increases expression of hemoglobin genes in mouse prefrontal cortex. BMC Neurosci. 2014;15:130. https://doi.org/10.1186/s12868-014-0130-6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Peters AHFM, O’Carroll D, Scherthan H, Mechtler K, Sauer S, Schöfer C, et al. Loss of the Suv39h histone methyltransferases impairs mammalian heterochromatin and genome stability. Cell. 2001;107:323–37. https://doi.org/10.1016/S0092-8674(01)00542-6.
Article
CAS
PubMed
Google Scholar
Chater-Diehl EJ, Laufer BI, Castellani CA, Alberry BL, Singh SM. Alteration of gene expression, DNA methylation, and histone methylation in free radical scavenging networks in adult mouse hippocampus following fetal alcohol exposure. PLoS One. 2016;11:e0154836. https://doi.org/10.1371/journal.pone.0154836.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chater-Diehl EJ, Laufer BI, Singh SM. Changes to histone modifications following prenatal alcohol exposure: an emerging picture. Alcohol. 2017;60:41–52. https://doi.org/10.1016/j.alcohol.2017.01.005.
Article
CAS
PubMed
Google Scholar
Ayata P, Badimon A, Strasburger HJ, Duff MK, Montgomery SE, Loh YHE, et al. Epigenetic regulation of brain region-specific microglia clearance activity. Nat Neurosci. 2018;21:1049–60. https://doi.org/10.1038/s41593-018-0192-3.
Article
CAS
PubMed
PubMed Central
Google Scholar
Watanabe Y, Miyasaka KY, Kubo A, Kida YS, Nakagawa O, Hirate Y, et al. Notch and Hippo signaling converge on Strawberry Notch 1 (Sbno1) to synergistically activate Cdx2 during specification of the trophectoderm. Sci Rep. 2017;7:46135. https://doi.org/10.1038/srep46135.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fromer M, Roussos P, Sieberts SK, Johnson JS, Kavanagh DH, Perumal TM, et al. Gene expression elucidates functional impact of polygenic risk for schizophrenia. Nature Neuroscience. 2016;19:1442–53. https://doi.org/10.1038/nn.4399.
Article
CAS
PubMed
PubMed Central
Google Scholar
Radulescu E, Jaffe AE, Straub RE, Chen Q, Shin JH, Hyde TM, et al. Identification and prioritization of gene sets associated with schizophrenia risk by co-expression network analysis in human brain. Mol Psychiatry. 2018;1. https://doi.org/10.1038/s41380-018-0304-1.
Cuthbert PC, Stanford LE, Coba MP, Ainge JA, Fink AE, Opazo P, et al. Synapse-associated protein 102/dlgh3 couples the NMDA receptor to specific plasticity pathways and learning strategies. J Neurosci. 2007;27:2673–82. https://doi.org/10.1523/jneurosci.4457-06.2007.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tarpey P, Parnau J, Blow M, Woffendin H, Bignell G, Cox C, et al. Mutations in the DLG3 gene cause nonsyndromic X-linked mental retardation. Am J Hum Genet. 2004;75:318–24. https://doi.org/10.1086/422703.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu Z, Niu Y, Xie M, Bu Y, Yao Z, Gao C. Gene expression profiling analysis reveals that DLG3 is down-regulated in glioblastoma. J Neurooncol. 2014;116:465–76. https://doi.org/10.1007/s11060-013-1325-x.
Article
CAS
PubMed
Google Scholar
Juul SE, Beyer RP, Bammler TK, Farin FM, Gleason CA. Effects of neonatal stress and morphine on murine hippocampal gene expression. Pediatr Res. 2011;69:285–92. https://doi.org/10.1203/PDR.0b013e31820bd165.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wei Q, Fentress HM, Hoversten MT, Zhang L, Hebda-Bauer EK, Watson SJ, et al. Early-life forebrain glucocorticoid receptor overexpression increases anxiety behavior and cocaine sensitization. Biol Psychiatry. 2012;71:224–31. https://doi.org/10.1016/j.biopsych.2011.07.009.
Article
CAS
PubMed
Google Scholar
Khalid O, Kim JJ, Kim H-SS, Hoang M, Tu TG, Elie O, et al. Gene expression signatures affected by alcohol-induced DNA methylomic deregulation in human embryonic stem cells. Stem Cell Res. 2014;12:791–806. https://doi.org/10.1016/j.scr.2014.03.009.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chastain LG, Franklin T, Gangisetty O, Cabrera MA, Mukherjee S, Shrivastava P, et al. Early life alcohol exposure primes hypothalamic microglia to later-life hypersensitivity to immune stress: possible epigenetic mechanism. Neuropsychopharmacology. 2019;1. https://doi.org/10.1038/s41386-019-0326-7.